
Nanos Mercurium: a Research Compiler for OpenMP

J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadéand J. Labarta
Computer Architecture Department, Technical University of Catalonia,

cr. Jordi Girona 1-3, Mòdul D6, 08034 - Barcelona, Spain

{jbalart, aduran, marc, xavim, eduard, jesus}@ac.upc.es

Abstract

OpenMP is still in the process of being defined and ex-
tended to broad the range of applications and paralleliza-
tion strategies it can be used for. The proposal of OpenMP
extensions may require the implementation of new features
in the runtime system supporting the OpenMP parallel ex-
ecution and modifications in an existing OpenMP com-
piler, either at the front end (parsing of new directives and
clauses) or back end (code generation targetting a specific
runtime system). It may even imply to modify the internals
of the compiler to accommodate new concepts, data struc-
tures or code manipulation routines. The objective of the
Nanos Mercurium compiler is to offer a compilation plat-
form that OpenMP researchers can use to test new language
features. It needs to be: 1) robust enough to enable testing
with real applications and benchmarks, and 2) easy to add
new features into it, hiding as much as possible all its in-
ternals. To achieve the first objective, we decided to build
Nanos Mercurium on top of an existing compilation plat-
form, the Open64 compiler. In order to achieve the sec-
ond objective, Nanos Mercurium uses templates of code for
specifying the transformations of the OpenMP directives. In
order to validate Nanos Mercurium, we show how to imple-
ment dynamic sections, a relaxation of the current definition
of SECTIONS to allow the parallelization of programs that
use iterative structures (such as while loops) or recursion.
It is shown as an alternative to the workqueueing execution
model proposed by KAI/Intel.

1 Introduction

Shared-memory parallel architectures are becoming
common platforms for the development of CPU demand-
ing applications. Today, these architectures are found in
the form of small symmetric multiprocessors on a chip, on
a board, or on a rack with a modest number of processors
(usually less than 32 or 64). In order to benefit from the
potential parallelism they offer, programmers require pro-

gramming models to develop their parallel applications with
a reasonable performance/simplicity trade–off. These pro-
gramming models are usually offered as library implemen-
tations or extensions to sequential languages that allow the
programmer to express the available parallelism in the ap-
plication. Language extensions are defined by means of di-
rectives and language constructs that are translated by the
compiler to library calls. These libraries offer mechanisms
to create threads, distribute work among them and synchro-
nize their activity.

OpenMP [5] has become the standard for parallel
programming in shared memory parallel architectures.
OpenMP offers a set of directives or pragmas that are in-
cluded in the specification of high-level languages such as
C or Fortran. OpenMP results successful for the paralleliza-
tion of a broad range of numerical applications coming from
different engineering fields. Basically, the success comes
from the fact that OpenMP makes the parallelization pro-
cess easy and incremental.

However, the OpenMP community is conscious about
the fact that certain parallelization structures are not pos-
sible (or very difficult to implement) with the current def-
inition. For example, the parallelization of non–numerical
applications, which usually deal with memory linked data
structures and/or rely on divide and conquer strategies.
Those applications are coded through the use of iterative
structures likewhile loops and recursion. For this rea-
son, the language specification is open to extensions. The
OpenMP Architecture Review Board is in charge of study-
ing and discussing proposals that come from the OpenMP
community. Application developers as well as researchers
in compiler optimizations can submit their proposals for
possible extensions of the specification. For example,
KAI/Intel proposed workqueueing to handle the paralleliza-
tion of the above mentioned non–numerical codes [9, 10].
The proposal is based on the introduction of a new work–
sharing construct, which specifies a queue (TASKQ) where
tasks are queued for execution (TASK). Threads that belong
to the team dynamically extract tasks from that queue.

The process of designing, implementing and evaluating

a new proposal could be more effective if there were open
source compiler and runtime infrastructure for OpenMP
simple to modify and extend. There have been several re-
cent attempts, as for instance NanosCompiler [1] for For-
tran77, Omni [7] for Fortran77 and C and OdinMP [4] for
C/C++. All of them are source–to–source translators that
transform the code into an equivalent version with calls to
the associated runtime system. However, modifying the
compiler to include new language features, to explore alter-
native code generation strategies or to target different run-
time systems is not an easy task that requires to go into
the deep internals of the compiler. Nanos Mercurium is
presented as a new approach to build an infrastructure for
OpenMP extensions. It has been designed with two objec-
tives: 1) it needs to be robust enough to enable testing with
real applications and benchmarks, and 2) it has be easy to
add new features into it, hiding as much as possible all its
internals. To achieve these objectives we decided to build
Nanos Mercurium on top of an existing compilation plat-
form, the Open64 compiler, and to use templates to specify
the transformations for OpenMP construct.

The paper is structured as follows: Section 2 describes
the basic OpenMP compiler transformations. Section 3 de-
scribes the approach followed in the design of Nanos Mer-
curium: specification of code transformations based on tem-
plates. As an example, Section 4 presents a relaxation of the
OpenMPSECTIONS work–sharing construct and its im-
plementation in Nanos Mercurium. Section 5 evaluates the
performance achieved with some codes and compares this
performance with the one achieved with the Intel compiler
with taskqueues. Finally, Section 6 concludes the paper and
outlines future work.

2 OpenMP Compiler Support

In this section we summarize the common functional-
ities available in most runtime systems that support the
OpenMP execution model, and show the compiler trans-
formations needed in the source-to-source translation pro-
cess. The most important features need to be considered:
how threads are created/terminated, how threads execute the
code inside the parallel region, how threads parcel out the
work specified in work–sharing constructs, how threads ac-
cess data according to the data scoping rules and the mech-
anisms available to synchronize threads at specific points.
All these features are jointly achieved by the runtime and
compiler. In this paper, we show the transformations one
by the Nanos Mercurium compiler when targeting the Nth-
Lib OpenMP runtime. We consider the description of the
NthLib internals out of the scope of this paper (for more
details the reader is referred to [3, 2]). Both compiler and
runtime are available from the project web site at CEPBA
(www.cepba.upc.es/mercurium).

void foo (double A[100][100], double B[100][100],)

{

#pragma omp parallel

 {

#pragma omp sections

#pragma omp section

 {

 initialize (A);

 }

#pragma omp section

 {

 initialize (B);

 }

 }

}

void par_foo_01 (double A[100][100], double B[100][100])

{

 call sections_foo_01 (A, B)

}

void foo (double A[100][100], double B[100][100],)

{

 nth_nthreads = nth_cpus_actual ():

 nth_depadd(nth_self (), nth_nthreads + 1);

 for (th = 0; th < nth_nthreads; th++)

 nth_thread_create_1s_vp (par_foo_01, 0, th, 2, A, B)

 nth_block ();

}

void sections_foo_01 (double A[100][100], double B[100][100],)

{

 nth_begin_for (0, 1, 1, DYNAMIC, 1);

 while (nth_next_iters (&nth_down, &nth_up, nth_last)) {

 for (nth_sect = nth_down; nth_sect < nth_up; nth_sect) {

 if (nth_sect = = 0) section_foo_00 (A);

 if (nth_sect = = 1) section_foo_01 (B);

 }

 }

 nth_end_for (1);

}
d) Code for SECTIONS work sharing construct

c) Code for thread creation/termination

b) Parallel code encapsulation

a) Example code with SECTIONS construct

Figure 1. OpenMP example and compiler
transformations.

The transformation process is described using the sample
code shown in Figure 1.a. This section will mainly focuses
on code transformations for thread creation and termination,
and for work distribution. The reader is referred to [8] for a
description of the other compiler transformations.

2.1 Parallel Code Encapsulation

In order to allow threads to execute the code encapsu-
lated in thePARALLEL construct, the compiler extracts the
code enclosed in a parallel region and defines a subroutine
where the code is located. This transformation is quite sim-
ple and just requires basic compiler operations like code
extraction and symbol reference gathering. This last one
is necessary to declare subroutine arguments that define the
correct context to execute the encapsulated code. For the ex-
ample in 1.a, the compiler generates the subroutine in figure

1.b.

2.2 Thread Spawn and Join

Once the parallel code has been encapsulated, the com-
piler replaces the original code by a block of statements
in charge of spawning and joining the team of threads
created to execute it. This block of statements mainly
contains a loop that adds a new thread to the team in
each iteration. The compiler injects a runtime call to the
nth create 1s vp service to create the thread, provide
the address of the encapsulated function to execute and the
necessary arguments. Before the execution of this loop, the
compiler injects code to query the runtime about the num-
ber of available threads to create the team. This corresponds
to the runtime invocation tonth cpus actual service.
Once all threads are created, the thread that has spawned
the parallelism blocks and waits until all threads in the team
finish the execution of the parallel code. This is accom-
plished by the injection of another runtime call to service
nth block that implements the implicit barrier atEND
PARALLEL. Figure 1.c shows the code that the compiler
should generate for the parallel execution of the example in
Figure 1.a.

2.2.1 Work Distribution

For each work-sharing construct in a parallel region, the
compiler performs a transformation process similar to the
one described for the parallel region. First the code inside
the work-sharing construct is extracted and encapsulated in
a new subroutine. The compiler injects a call statement
to the new allocated subroutine that replaces the extracted
code. Notice that this is done in the subroutine contain-
ing all the code in the parallel region, as this transforma-
tion is done after the code encapsulation process described
in previous section. The code inside the new encapsulated
function depends on the work-sharing (i.e.DO,SECTIONS,
SINGLE or WORKSHARE). For example, for aSECTIONS
construct, the compiler would generate the code shown in
Figure 1.d. The runtime servicesnth begin for and
nth end for define and conclude the execution of the
work-sharing construct. The compiler generates a loop that
each thread in the team executes to request work to execute
(servicenth next iters). The body of this loop sim-
ply redirects the execution to the appropriateSECTION ac-
cording to their lexicographic order in the source code. The
reader is referred to [8] for additional details about this code
and code generation for other work–sharing constructs.

2.3 Parametrization of the Transformations

All the compiler transformations at this point have as-
pects that depend on the source code that is being trans-

formed while other aspects are independent. For example,
the symbol context depends strictly on the symbols that are
referenced inside the parallel code and the OpenMP data
scoping clauses. Or for example, the injection of the call to
nth create 1s vp is always done in the same way ex-
cept for some of its arguments. For this reason, the proposed
mechanism in this paper to specify the transformation pro-
cess allows the specification of constant and variable parts,
i.e. parts that depend or not on the source code being trans-
formed.

3 Template–guided Transformations

The Nanos Mercurium compiler is based on the defi-
nition of a set of templates that guide the compiler in the
process of transforming the code according to the OpenMP
directives. In order to have a robust platform able to han-
dle real applications and benchmarks, we decided to imple-
ment Nanos Mercurium on top of the Open64 compiler [6].
We started from Open64 with a built–in OpenMP parser
and internal representation, namedwhirl, able to repre-
sent OpenMP constructs. In order to drive the transforma-
tion process, we added a new phase that is executed after
the corresponding Fortran or C front–end. The input of this
new phase is thewhirl intermediate representation cre-
ated by the front–end with the OpenMP directives repre-
sented in the Abstract Syntax Tree (AST). When our phase
is executed, all the directives are transformed applying a set
of templates, obtaining a newwhirl representation with
all the OpenMP directives replaced by calls to the NthLib
thread library. After that, we use one of the Open64 back–
ends over thewhirl intermediate representation that emits
source code in the same input language.

3.1 Template Definition

The templates used by our compiler are written in the
same language as the application being compiled, with no
additional extensions to it. There are three simple rules that
are needed to write templates. The first rule describes how
to specify a variable part in a template, the second one how
to specify parts of code only necessary under certain condi-
tions and the last one how to specify parts of code that have
to be repeated a variable number of times.

• Rule 1: All variables in a template whose names
start with a certain prefix,tpl in our implementa-
tion, are template variable parts that the compiler will
replace with an expression. The transformation to do
over this variables is coded in the compiler internals.
The compiler includes a correspondence between tem-
plate variable names and the corresponding transfor-
mation.

• Rule 2: When the logical expression in a conditional
construction (if statement) includes a template vari-
able, only the code that would be executed after eval-
uating the condition will be inserted in the template
instantiation. The template expansion module has to
evaluate the condition depending on the code being
compiled.

• Rule 3: When the logical expression of a loop con-
struction (dowhile statement) includes a template
variable, the code inside the construction is inserted
n times and the original loop construction is extracted
from the template instantiation. The template expan-
sion module has to evaluate the condition and the value
n, depending on the code being compiled.

Rule 1 needs to be extended in order to handle the possibil-
ity of having a variable outside any expression or language
construction. In these cases we declare external subroutines
with names according to rule 1 and insert calls to them in
the templates. These subroutine calls will be replaced by
the expansion of the template reference by the subroutine
name. In order to support the previously defined rules, our
implementation has required a template expansion module
that performs the following template operations:

• Operation 1: replace a template variable by an-
other variable.

• Operation 2: replace a template variable by a in-
teger or real constant.

• Operation 3: replace a template variable by a por-
tion of the AST.

• Operation 4: replace a template variable by a set
of real parameters.

• Operation 5: replace a template variable by a set
of formal parameters.

• Operation 6: create a set of local variables in a
template.

• Operation 7: replicate part of code in template.
• Operation 8: extract a part of code in a template.
• Operation 9: change the name of a template vari-

able.

The current status of the Nanos Mercurium compiler
supports near the whole language specification (OpenMP
2.0). All the compiler transformations are specified through
the use of code templates. For each language construct there
is one template code to be applied. In [8] we presented how
the code templates are used to implement the necessary sup-
port in the compiler forPARALLEL and work–sharing con-
structs. In the following section, we show how to build a
new template to instruct the compiler to transform a relaxed
version of theSECTIONS construct, what we call dynamic
sections.

4 Dynamic Sections Proposal

The proposal in this section tries to address the limi-
tations in the OpenMP programming model regarding ap-
plications based on recursion and/or traversing memory
linked data structures. The proposal is based on relaxing
the current specification forSECTIONS, mainly allowing a
SECTION to be instantiated multiple times inside the scope
of SECTIONS and executing code outside anySECTION
by a single thread. The proposal has certain similarities
with the KAI/Intel workqueueing proposal [9, 10], hiding
the concept of queues to the programmer. This proposal
is used as an example to show how to extend Nanos Mer-
curium by defining the appropriate template to handle dy-
namic sections.

4.1 Relaxing the SECTIONS construct

TheSECTIONS work-sharing construct allows the pro-
grammer to define several portions of code to be executed
in parallel. OpenMP does not allow to have code outside
anySECTION (in fact in the Fortran specification the first
SECTION can be omitted but the compiler assumes that it
exists). We relax this constraint so that this code outside all
SECTION is executed single threaded. This thread would
be the responsible for work generation, allowing the pro-
grammer to implement the work generation strategies that
are commonly used in the applications mentioned before.
In addition, aSECTION could now be instantiated multi-
ple times, for example because it is included in a loop that
traverses a linked–data structure or because it is inside a re-
cursive code structure.

When a team of threads executing aPARALLEL region
encounters aSECTIONS construct, only one of them is go-
ing to execute the code inside theSECTIONS construct and
outside anySECTION construct. When the thread execut-
ing the single–threaded part ofSECTIONS finds an instance
of aSECTION, it simply queues theSECTION in an inter-
nal queue of work to be executed by the team of threads.

The code in figure 2 shows an example of use. Subrou-
tine queens par contains the definition of a parallel re-
gion. Inside this region, there is aSECTIONS construct
that includes afor loop. In each iteration of this loop a
SECTION construct is instantiated creating a new branch in
the recursion tree.

One of the main differences with the workqueueing
model is that this proposal does not allow the nesting of
SECTIONS while KAI/Intel allow the nesting ofTASKQ.
The nesting should be done by nestingPARALLEL regions,
each including theSECTIONS. The first implication of this
is that the same team of threads is executing the nested
TASKQ, while in our proposal a new team is created in each
PARALLEL region, disabling the possibility of doing work

void queens_par (int board, int level, ...)

{

 int copy_board[MAX_SIZE];

 if (level = = MAX_SIZE) return;

#pragma omp parallel

#pragma omp sections

 {

 for (i = 0; i < MAX_SIZE; i++) {

 #pragma omp section

 {

 for (j = 0; j<level; j++)

 copy_board[j] = board[j];

 ...;

 queens_par (copy_board, level+1,...);

 }

 }

 }

}

Figure 2. Dynamic sections example: queens
code.

stealing. The second implication is that the implicit barrier
at the end ofPARALLEL does not exist when simply nest-
ing TASKQ. We are investigating the effects that these im-
plications may have in applications and see if they limit the
parallelism that can be exploited. In general, it should be
considered the possibility of nesting any kind of OpenMP
work–sharing construct, but this is considered out of scope
of this paper and subject of further discussion.

If the compiler detects that there is no code outside any
SECTION, it can turn to the initial code generation strategy
(what we name static sections).

4.2 Template Specification for Dynamic Sections

Figure 3 shows the template specification that instructs
the compiler how to transform the code for a dynamic SEC-
TIONS work-sharing construct. The code uses the support
provided by the NthLib thread runtime, but the mechanisms
to implement the compiler transformation are valid inde-
pendently of the target runtime library. The template is
written in C and includes all the necessary declarations to
be a correct C code. Some of these declarations correspond
to template variables which are going to cause the compiler
apply the appropriate transformations.

The name of the subroutine where the template
code is located is identified by a template variable
TPL DYNAMIC SECTIONS which is going to cause the

compiler to generate a new identifier for the subroutine.
The template variableTPL SECTIONS PARAMS appears
as a subroutine argument. It is going to be replaced by
the declaration of all the symbols referenced by all the
dynamic sections. The template code includes anif
statement that checks if the thread is the master of the
current team. This ensures that only the master thread is
going to execute the code related to the work distribution.
This code consists of several statements that cause the
executing thread communicates to the runtime the number
of dynamic sections that are going to be generated. This
number is obtained by the compiler after the transformation
applied to the template variableTPL NUM SECTIONS is
done. This variable expands to the number of sections in
the SECTIONS work-sharing construct. The runtime call
nth depadd communicates this number to the runtime.
After that, ado while loop is coded in the template,
but controlled by a template variable:TPL SECTIONS.
This is going to cause the compiler traverses the list of
sections. For each section, the code in the loop body is
replicated and the appropriate transformations are applied
in it. The loop body in the template is formed by several
statements where theTPL SECTION NUM PARAMS,
TPL SECTION SUBROUTINE, TPL SECTION PARAMS
variables appear. The compiler replaces the vari-
able TPL SECTION NUM PARAMS by the num-
ber of arguments in the section’s subroutine. The
TPL SECTION SUBROUTINE variable appears as ar-
gument of the runtime call to servicenth create 1s.
This variable is replaced by the identifier of the routine
generated for the section being treated. Finally, the vari-
able TPL SECTION PARAMS is replaced by the list of
arguments that are referenced inside the section’s code.

The OpenMP definition forces the threads to perform a
barrier synchronization at the end of the SECTIONS execu-
tion. Notice that the SECTIONS construct is the only work-
sharing inside the parallel region. This allows for optimiza-
tion and removing the barrier as it is going to be performed
at the END PARALLEL construct. This is achieved in the
template code by the runtime calls tonth successor
andnth depadd. Both calls are responsible to link the
dynamic sections with the thread that spawned the parallel
region, forcing that this one can not be terminated until all
the dynamic sections are terminated too.

Notice that most of the variable parts in the template cor-
respond to information that the compiler has to compute, no
matter the code generation associated to the dynamic sec-
tions. If this code generation has to be changed, the changes
can be done in the template, with no need of implementing
the changes inside the internals of the compiler.

void TPL_DYNAMIC_SECTIONS(int TPL_SECTIONS_PARMS)

{

 long long nth_succ;

 int nth_nsections;

 int ndep;

 int nth_num_params;

 long long nth;

 int TPL_NUM_SECTIONS;

 bool TPL_SECTIONS;

 int TPL_SECTION_NUM_PARMS;

 int TPL_SECTION_PARMS;

 if (nth_iam_master_ ())

 {

 nth_succ = nthf_successor (nthf_self_ ());

nth_sections = TPL_NUM_SECTIONS + 1;

 nthf_depadd_ (&nth_succ, &nth_nsections);

nth_ndep = 0;

while (TPL_SECTIONS)

 {

nth_num_params = TPL_SECTION_NUM_PARMS;

nth = nthf_create_1s_(TPL_SECTION_SUBROUTINE,

 &ndep,

 &nth_succ,

 &nth_num_params,

 TPL_SECTION_PARMS);

nth_to_rq (nth);

 }

 }

}

Figure 3. Template for dynamic sections.

5 Testing and Evaluation

In this section we describe the tests performed to validate
the proposed dynamic sections and the transformation done
by the compiler to implement them.

5.1 Benchmarks

In order to test our proposal and implementation, we
have used some of the examples that KAI/Intel used to moti-
vate and evaluate their implementation of taskqueuing. We
mainly replacedTASKQ with SECTIONS andTASK with
SECTION. All of them have in common that the algorithms
used in the computations are expressed through recursion.
Parallelism appears among the recursion branches that each
application defines:

• Queens: The algorithm computes the different solu-
tions for placingn chess queens in a chess board, none
of them ”killing” another. The computation is done re-
cursively. Each recursive branch in the recursion tree,
can be executed in parallel.

• Strassen: Strassen matrix multiplication algo-
rithm decomposes square matrices into four square
sub-matrices and then compute the whole matrix
multiplication performing only seven sub-matrices

multiplications and eighteen sub-matrices addi-
tions/substractions. Recursive decomposition can be
applied to create as many matrix multiplication tasks
as desired and execute all them in parallel.

• MultiSort: Multisort is a variation of the mergesort al-
gorithm. A recursive divide and conquer approach is
used. An array of N 64-bits elements is divided in four
sub-arrays, each sub-array is sorted recursively and fi-
nally the four sorted sub-arrays are merged first to ob-
tain two sorted parts and lastly only one.

5.2 Initial Experiments

The experimental platform for this paper is a SGI Ori-
gin2000 with 64 R10000 processors (250 Mhz) and Irix 6.5.
Nanos Mercurium generates a transformed source code that
is finally compiled and linked with NthLib using the SGI
native compiler to generate the executable code.

Figure 4 shows the performance, in terms of speed–up
with respect to the sequential version, that is obtained for
the benchmarks. These numbers are initial and there is still
more work to do in order to understand them and detect who
is the responsible for the performance degradation observed
(application, dynamic sections proposal, compiler transfor-
mation or OpenMP runtime):

• Queens: the benchmark is executed with a chess
board of 13 x 13. Each time the parallelism is spawn,
13 dynamic sections are created. In order to feed 4, 8,
16 , and 32 threads it suffices to have 2 levels of recur-
sion. As shown in Figure 4 the application scales quite
well with the number of processors.

• Strassen: the benchmark is executed with a ma-
trix of 1280 doubles. As shown in Figure 4 the bench-
mark achieves efficiency up to 16 threads. Using more
threads is not providing more parallelism (speedup of
16.95 with 32 threads).

• MultiSort: This is the application that behaves
worst. Although the speed–up increases up to 16 pro-
cessors, the efficiency decreases when more processors
are used (0.72 with 2 processors and 0.27 with 16).

6 Conclusions and Future Work

In this paper we present Nanos Mercurium, a new re-
search compiler infrastucture that we want to offer to the
OpenMP community to test new proposals to the language.
The compiler source–to–source transformations are spec-
ified using templates, which relieves the user from going
into the deep internals of the compiler.

Figure 4. Performance for the Nanos Mer-
curium implementation of dynamic sections.

The templates for the main OpenMP constructs are de-
scribed in a companion paper [8]. In this paper we want to
show how to specify the template for a relaxed definition of
SECTIONS, what we call dynamic sections. Dynamic sec-
tions allow to extract parallelism out of programs that make
use of recursion or iterative traversals of data structuresto
generate work to be executed in parallel. The proposal and
implementation are tested using some benchmarks and their
performance is evaluated.

References

[1] M. Gonzalez, E. Ayguade, J. Labarta, X. Martorell,
N. Navarro and J. Oliver. ”NanosCompiler: A Re-
search Platform for OpenMP Extensions”, In First
European Workshop on OpenMP, Lund (Sweden),
October 1999

[2] X. Martorell, E. Ayguad, N. Navarro, J. Corbalan,
M. Gonzlez and J. Labarta, ”Thread Fork/Join Tech-
niques for Multi-level Parallelism Exploitation in
NUMA Multiprocessors”, Proceedings of the 13th.
ACM International Conference on Supercomputing
(ICS99).

[3] X. Martorell, E. Ayguad, N. Navarro and J. Labarta,
”A Library Implementation of the Nano-Threads
Programming Model”, Proceedings of the 2nd. Eu-
ropar Conference 1996.

[4] C. Brunschen and M. Brorsson, Lund Univer-
sity ”OdinMP/CCp – A Portable Implementation
of OpenMP for C”, First European Workshop on
OpenMP, (EWOMP99)

[5] ”Fortran Language Specification , v2.0”,
http:/www.openmp.org

[6] http://sourceforge.net/projects/open64/

[7] http://phase.hpcc.jp/Omni/

[8] J. Balart, A. Duran, M. Gonzalez, X. Martorell,
E. Ayguade, J. Labarta, ”Skeleton driven compiler
transformations”, 11th Workshop on Compilers for
Parallel Computers, July 7-9

[9] S. Shah, G. Haab, P. Petersen, J. Throop, ”Flexible
Control Structures for Parallel C/C++”, First Euro-
pean Workshop on OpenMP, September 1999, Lund
University, Lund, Sweden

[10] E. Su, X. Tian, M. Girkar, H. Grant, S. Shah, P. Pe-
terson, ”Compiler Support of the Workqueuing Ex-
ecution Model for Intel SMP Architectures” Fourth
European Workshop on OpenMP, September 2002,
Rome

