
Automatic Thread Distribution For Nested Parallelism In
OpenMP

Alejandro Duran
Computer Architecture
Department, Technical
University of Catalonia

cr. Jordi Girona 1-3
Despatx D6-215

08034 - Barcelona, Spain

aduran@ac.upc.edu

Marc Gonzàlez
Computer Architecture
Department, Technical
University of Catalonia

cr. Jordi Girona 1-3
Despatx C6-E207

08034 - Barcelona, Spain

marc@ac.upc.edu

Julita Corbalán
Computer Architecture
Department, Technical
University of Catalonia

cr. Jordi Girona 1-3
Despatx C6-203

08034 - Barcelona, Spain

juli@ac.upc.edu

ABSTRACT
OpenMP is becoming the standard programming model for
shared–memory parallel architectures. One of its most in-
teresting features in the language is the support for nested
parallelism. Previous research and parallelization experi-
ences have shown the benefits of using nested parallelism
as an alternative to combining several programming models
such as MPI and OpenMP. However, all these works rely
on the manual definition of an appropriate distribution of
all the available thread across the different levels of par-
allelism. Some proposals have been made to extend the
OpenMP language to allow the programmers to specify the
thread distribution.

This paper proposes a mechanism to dynamically compute
the most appropriate thread distribution strategy. The mech-
anism is based on gathering information at runtime to derive
the structure of the nested parallelism. This information is
used to determine how the overall computation is distributed
between the parallel branches in the outermost level of par-
allelism, which is constant in this work. According to this,
threads in the innermost level of parallelism are distributed.

The proposed mechanism is evaluated in two different en-
vironments: a research environment, the Nanos OpenMP
research platform, and a commercial environment, the IBM
XL runtime library. The performance numbers obtained val-
idate the mechanism in both environments and they show
the importance of selecting the proper amount of parallelism
in the outer level.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming;
D.3.4 [Processors]: runtime environments; D.4.1 [Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’05, June 20-22, Boston, MA, USA.
Copyright c© 2005, ACM 1-59593-167-8/06/2005...$5.00

Management]: Multiprocessing; D.4.8 [Performance]: Mea-
surements; C.4 [Performance of Systems]: Measurement
techniques

General Terms
Algorithms,Experimentation, Performance

Keywords
OpenMP, nested parallelism, thread clustering

1. INTRODUCTION
Shared–memory parallel architectures are becoming com-
mon platforms for the development of CPU demanding ap-
plications. Today, these architectures are found in the form
of small symmetric multiprocessors on a chip, on a board,
or on a rack with a modest number of processors (usually
less than 32). In order to benefit from the potential paral-
lelism they offer, programmers require programming models
to develop their parallel applications with a reasonable per-
formance/simplicity trade-off.

OpenMP [20] is becoming the standard for specifying the
parallelism in applications for these small shared-memory
parallel architectures. Its success comes from the fact that
OpenMP makes the parallelization process easy and incre-
mental. One of the most interesting aspects in the OpenMP
programming model is that it considers nested parallelism.
However, the specification does not provide the necessary
implementation hints to efficiently exploit nested parallelism.

The research framework consisting of the NanosCompiler
[11] and the NthLib [18, 17] runtime library provides full
support for nested parallelism in OpenMP. some researchers
have used this framework to parallelize their applications
using nested parallelism [12, 3]. Some extensions to the
OpenMP specification have been proposed to efficiently ex-
ploit nested parallelism and allow programmers to specify
the appropriate allocation of resources to the different lev-
els of parallelism [13]. Basically, those extensions introduce
thread–clustering mechanisms in the OpenMP programming
model. Other research works have also shown the perfor-
mance benefits of thread–clustering mechanisms when ex-
ploiting nested parallelism [4, 5].

We extended this research framework towards a global so-
lution for the automatic selection of the best parallelization
strategy for OpenMP applications. Along the paralleliza-
tion process, programmers often attempt try different par-
allelization strategies, either single level or multilevel. De-
ciding which to use depends of several factors, such as the
available number of threads or specific application charac-
teristics. It may even depend on the input data sets. In the
case of nested parallelism, the programmer needs to specify
how the available resources (threads) are distributed among
the levels of parallelism. As we will show in the next sec-
tion, this decision is not an easy task. For this reason, in this
paper, we propose a mechanism to automatically compute
the appropriate thread distribution based on information
gathered at runtime. This information will give an accurate
description of the structure of the nested parallelism.

The structure of the paper is as follows: section 2 presents
the main motivations for this paper. Section 3 describes
the main contribution of this paper: the automatic thread
groups definition. Section 4 presents the performance eval-
uation. Section 5 describes the main contributions of pre-
vious research works in nested parallelism. Finally, section
6 presents the conclusions of this paper and outlines some
future work.

2. MOTIVATION
In order to motivate the proposal of this paper, we summa-
rize in this section the main observations and conclusions of
previous research works [4, 5, 2, 13, 3].

Figure 1 shows a simplified version of the structure of BT-
MZ, one of the codes included in the NAS multizone bench-
marks [9]. We will use it to show the kind of situations where
nested parallelism can be exploited to increase the perfor-
mance of the application. The code performs a computa-
tion over a blocked data structure. For each block of data
(or zone), some work is performed in a subroutine called
adi. A first level of parallelism appears since all zones can
be computed in parallel. This corresponds to a task level
parallelism and is coded by the parallelizing directive PAR-
ALLEL DO. A STATIC work distribution will be performed
among the threads that execute this first level of parallelism.
The definition of another level of parallelism is possible: the
computation performed in each zone of data is organized in
the form of a parallel loop. This parallel level would corre-
spond to data parallelism.The code in subroutine adi con-
tains a parallelizing directive for this loop. For this second
level of parallelism, a STATIC scheduling is set too. A time
step loop encloses the overall computation and at the end of
each iteration, there is some data movement to update zone
boundaries. This iterative structure is common in most nu-
merical applications and it is necessary in any technique that
dynamically improves the behavior of an application based
on its past behavior.

The programmer can choose between two parallelization strate-
gies that exploit a single level of parallelism. The first one
exploits the inter–zone parallelism. We will call it the outer
version. The second one exploits the intra–zone parallelism.
This is the inner version. The performance for the outer
version is clearly limited by the number of zones. Using
more threads than the number of zones does not contribute

...

do step = 1, niters

...

C Inter-zone parallelism

!$OMP PARALLEL NUM_THREADS(num_groups)

!$OMP DO

do zone = 1, num_zones

CALL adi (zone, ...)

end do

!$OMP END DO

!$OMP END PARALLEL

...

C Update zone boundaries

...

end do

...

end

subroutine adi (zone_id, ...)

C Intra-zone parallelism

!$OMP PARALLEL NUM_THREADS(zone_threads(zone_id))

!$OMP DO

do j = 1, k_size(zone_id)

...

end do

!$OMP END DO

!$OMP END PARALLEL

end

Figure 1: Main structure of the BT-MZ code with
nested parallelism.

to improve performance. In addition, zones may have differ-
ent sizes and lead to an unbalanced execution in which some
of the threads waste execution cycles waiting for the others
to finish their work. In case of important size differences,
the unbalance degree might cause a noticeable performance
degradation. So, two main factors are limiting the perfor-
mance of the outer version. First, the relation between the
number of available threads and the number of zones. Sec-
ond, the unbalance degree expressed through the size differ-
ences between the zones. In both cases, the outer version is
not going to adapt and increment the performance when an
important number of threads (32 or more) are available.

Other issues limit the inner version performance. The most
important issue is granularity. Creating the work in this
level of parallelism among a large number of threads might
cause that the work assigned to each thread is too small to
take profit from the parallel execution. The finest granu-
larity that can be exploited is conditioned by the runtime
overheads related to parallelism creation and termination,
work distribution and thread synchronizations. These over-
heads are going to be noticeable when executing with a large
number of threads (again, 32 or more).

After exploring the single level possibilities, it is necessary
to point out why a nested strategy would overcome the de-
tected limitations. By exploiting both levels of parallelism
(inner and outer levels), nothing is gained, unless threads
are arranged in a way that avoids the grain size and work
unbalance problems. Regarding the grain size problem, the

Figure 2: BT-MZ class A execution times on a IBM
Regatta

only solution is to forbid that all available threads exe-
cute the inner level of parallelism. So, Thread clustering
strategies are the solution. The main idea is to create, for
each block or zone, an different set of threads that will exe-
cute the work defined at the inner level of parallelism. The
NUM THREADS clause in the source code is used for that
purpose. This strategy solves the grain size problem, but it
does nothing to solve the possible work unbalance created
in the outer level of parallelism. In order to face that, the
thread sets should be defined according to the amount of
work assigned to each parallel branch in the outer level. In
the example, this is done by having different values for the
argument of the NUM THREADS clause, depending on the
zone that a set of threads is going to work on. In order to il-
lustrate the impact of this thread clustering strategy, Figure
2 shows how the execution time of the BT-MZ application
changes with different allocations of threads in the outer
level (NP) and inner level (NT) [3]. NT represents the av-
erage value as its exact value is different for each zone since
their have different sizes in this application. For each num-
ber of processors (2, 4, 8, 16 or 32) the best parallelization
strategy is different. This difficulty in determining the most
appropriate thread distribution between the levels of paral-
lelism is the main motivation for the work in this paper. Our
proposal is to rely on runtime mechanism to automatically
derive the optimal thread distribution at runtime.

3. AUTOMATIC THREAD GROUPS
In this section we describe the main issues to consider to
develop a runtime mechanism that computes optimal distri-
butions of threads. The main issues to consider are the num-
ber of groups in the outermost parallel level and a thread
reservation for the inner levels. These two factors totally
define a thread distribution. Actually, these factors plus the
distribution of work among threads determine the appropri-
ateness of a thread distribution. Depending on the unbal-
ance of the work distribution a thread distribution will or
will not succeed in improving the performance of the ap-
plication. If the thread reservation for the inner levels of
parallelism is not in concordance with the work distribution
work unbalance will persist. Thus, three elements condition
the benefits that can be obtained from a thread distribution:
the number of outer groups, the number of threads assigned
to each group, and the work distribution.

Our objective is to find an appropriate thread distribution
without programmer intervention. The implementation of
the runtime system needs to deal with the three elements

previously mentioned. Our proposal focuses only on tuning
the thread distribution for the inner levels. Our runtime
implementation is not going to adjust the number of outer
groups or the work distribution. These two factors will be
specified in the application by the programmer using the
appropriate OpenMP directives. Given a work distribution
and a number of groups the runtime will be able to derive
the best thread assignment for the inner level. The only
requisite for our implementation is that the program behaves
in a iterative manner.

3.1 Methodology
For each nest of parallel regions where the runtime will au-
tomatically compute a thread distribution the programmer
previously defined a number of groups and a work distri-
bution schema. The initial assumption is that each group
weights the same in terms of computation, so the available
threads are uniformly distributed. The runtime needs to
gather some kind of information that helps it to infer how
the computation is distributed among the groups. The de-
tection of work unbalance will then be translated to changes
on the thread distribution: increasing the number of threads
for those groups heavily weighted and decreasing the number
of threads in those with a lesser load. Therefore, deciding
what kind of information will be gathered, is an important
issue of the implementation. Assuming that a gathering
mechanism is available, we need to define a procedure to
infer the work distribution and link it to a policy to redis-
tribute the threads accordingly. At this point, it is necessary
to have some evaluating process, pointing out the improve-
ment that will be obtained from applying the new thread
distribution. A function predicting the benefit has to be
implemented, but under some threshold control, in order to
avoid unnecessary changes in the distribution. Notice that
the lack of such mechanism would open the system to un-
desirable effects (e.g. constantly moving threads across the
groups or even thread ping-pong).

Figure 3 shows our general framework for computing the
optimal thread distribution. It is a typical feedback guided
scenario in which three phases can be distinguished. A first
one where the information is gathered and transformed in
order to obtain a description of the parallelism structure
in terms of load balance. A second one where a new thread
distribution is established through the obtained information.
Finally a validation phase where the distribution is accepted
or not.

3.2 Implementation
This section describes the implementation decisions and the
details of the three phases mentioned in the previous section:
Runtime information sampling, Thread distribution policy
and Validation of a thread distribution.

3.2.1 Runtime information sampling
In the implementation of this phase, we had to made to de-
cisions: what information will the runtime system measure
and it will consider this data is to obtain a model of the
parallelism structure of the application. In our implementa-
tion, execution time is the preferred metric, but of course,
the reliability of the measurements depends on the places
selected for the probes.

Figure 3: Framework design overview

What to sample, where to sample
Our runtime system places time probes at the beginning and
at the end of the execution of each thread. This allows for a
good approximation of the work each group of threads does,
unless the runtime system introduces unreasonable over-
heads that distort the measurements. Notice that the way
the probes are placed make the accumulated time include all
the overheads related to thread creation/termination, bar-
rier synchronizations and so on. We expect these overheads
will be low enough so they will not interfere in the sampling.

A better, but more complex, approach is placing the probes
at the beginning of the work sharing construct and before
the implicit barrier at the end of each work sharing con-
struct. Accumulating the time in each work sharing we will
obtain a good sample for the amount of work of each group
of threads.

Information preprocessing
Our runtime implementation takes the measurements in the
outermost level of parallelism as a description of the paral-
lelism structure of the application. The variance between
those measurements will report the unbalance degree that
was obtained since the last thread distribution was applied.
The measurements are normalized to the minimum sample.
That is, the runtime finds the thread with the minimum ex-
ecution time and it divides the rest of values by this one.
This normalization erases the small variations of the sam-
pling process giving a more meaningful collection of compu-
tational weights for each group of threads.

In this step, the runtime could also compute additional met-
rics from the sampled data, like the degree of unbalance, that
could be useful to the distribution policy.

3.2.2 Thread distribution policy
After the parallelism structure is modelled, the thread distri-
bution policy is invoked to compute the optimal distribution
of threads between the outer level groups. Different policies
could be implemented here.

We have implemented an algorithm based on the work from
Gonzàlez et al.[13]. Figure 4 shows the code algorithm writ-
ten in Fortran90 syntax. The variable weight contains the
proportions previously mentioned. The variable ngroups
refers to the number of threads devoted to the execution of

the parallelism in the outermost level. The Variable how-
many specifies the number of threads to be used for the
execution of the parallelism in the inner levels. The variable
num threads refers to the total number of threads avail-
able. First, the algorithm assigns one thread per group. This
ensures that at least one thread is assigned for the execu-
tion of the inner levels of parallelism that group encounters.
After that, the rest of threads are distributed according to
the proportions in vector weight.

pos=minloc(samples(1:ngroups))
weight(1:ngroups)=samples(1:ngroups)/samples(pos)
howmany(1:ngroups) = 1
do while (sum(howmany(1:ngroups)) .lt. num_threads)

pos = maxloc(weight(1:ngroups)/
howmany(1:ngroups))

howmany(pos) = howmany(pos) + 1
end do

Figure 4: Thread distribution algorithm.

3.2.3 Validation of a thread distribution
After the policy computes a thread distribution a number
of filters may be used to validate that we will be obtain a
benefit after applying the new distribution.

Critical path validation filter
Moving threads is not free. There is some penalty mainly
caused because of data movement across caches. This filter
discards those cases where moving threads between groups
will not result in an performance increment that overcomes
the penalty of the movement.

Using the time samples and the new thread distribution,
this filter computes an estimation of the critical path that
would result if the new distribution was applied. The time
samples are divided by the number of assigned threads in
the new distribution. If the maximum value of this divisions,
i.e. the critical path, is greater than the one obtained with
the current thread distribution the distribution. It also is
discarded if the time difference is below a certain threshold.
Figure 5 shows the described algorithm in Fortran90 syntax.
We suggest 5% as the threshold value.

Ping-pong effect
This filter is in charge on detecting a ping-pong situation,
where a number of distributions are applied cyclically with-
out any real gain. This filter uses the history of computed

threshold= number between 0 and 1
pos=maxloc(samples(1:ngroups)/howmany(1:ngroups))
new_critical_path=samples(pos)/howmany(pos)
if (new_critical_path .lt prev_critical_path .and.

(new_critical_path - prev_critical_path) .gt.
(threshold * prev_critical_path)) then

return true
else
return false

endif

Figure 5: Critical path validation algorithm.

thread distributions to detect this situation. When the filter
detects the ping-pong it chooses the distribution that best
worked and it filters out any other.

More threads than chunks of work anomaly
The distribution algorithm is not aware of the number of
chunks of work that will be defined in the inner levels of par-
allelism. The parallel regions in the inner levels might offer
different degrees of parallelism translated to how chunks of
work are distributed among the threads. It is possible that
one parallel region offers enough chunks so all the threads
can work, while others do not. Our implementation is sen-
sitive to this effect. But if this situation occurred it will be
reflected in the measurements and the thread distribution
algorithm will solve it.

4. EVALUATION
The proposal in this paper was implemented in two dif-
ferent environments: a research environment, the NANOS
OpenMP runtime library and a commercial environment,
the IBM XL runtime library. We use for the evaluation
two benchmarks from the NAS Multizone suite. The follow-
ing sections describe the execution environments and the
most important aspects of the benchmarks. These aspects
condition the nested parallelism execution and the thread
distribution computation.

4.1 Execution environments
4.1.1 NANOS environment
We executed the benchmarks that use the NANOS run-
time library in a Silicon Graphics Origin2000 system [16]
with 64 R10k processors, running at 250 MHz with 4 Mb
of secondary cache each. The benchmarks were compiled
was done using the NANOS compiler which performs all
the OpenMP transformations. This compiler is a source-to-
source compiler. To build the binaries, we used the na-
tive compilers with the following flags:-64 -Ofast=ip27 -
LNO:prefetch ahead=1:auto dist=on.

4.1.2 IBM XL environment
Benchmarks using the IBM XL environment were run in a
p690 32-way Power4 [8] machine at 1.1 Ghz with 128 Gb
of RAM. We used IBM’s XLF compiler with the following
flags:-O3 -qipa=noobject -qsmp=omp. The operating system
was AIX 5.2.

4.2 Applications
We evaluated two applications from the NAS Multizone
benchmark suite [9]: BT and SP with input data class A.
These benchmarks solve discretized versions of the unsteady,

compressible Navier Stokes equations in three spatial dimen-
sions. The two applications compute over a data structure
composed by blocks. The computation processes one block
after another. Then, some data is propagated between the
blocks. Parallelism appears at two levels. At the outer-
most level, all the blocks can be processed in parallel. At
the innermost level, the computation in each block can be
coded through parallel do loops. This structure allows for
the definition of a two-level parallel strategy. The main dif-
ference between the two benchmarks is the composition of
the blocks, which is going to be the main issue in the evalua-
tion. In the case of the BT-MZ, the input data is composed
by blocks of different sizes, while in SP-MZ all blocks are of
the same size.

4.2.1 BT-MZ class A
BT-MZ, using input class A, works with an input data com-
posed by 16 three-dimensional blocks. For each block, BT-
MZ computes different phases. All of them implement a nest
of three do loops: one per dimension. Table 1 shows the size
of each block, according to the dimension sizes. Usually, the
outermost loop corresponds to the K-dimension and is paral-
lelized. Two phases must be parallelized on the J-dimension
because of data dependences.

Applying a single level strategy forces the programmer to
choose between two possibilities. Exploiting the parallelism
between blocks, which is limited by two factors: only 16
threads can obtain work as there are only 16 blocks, and
what is worst, the parallelism is highly unbalanced. Last
column on table 1 shows the proportions between the blocks.
Between the the smallest block (block 1) and the largest one
(block 16) there is a factor of 19.9. The other possibility
is to exploit the parallelism inside the block. The loops
over the K-dimension and J-dimension (this last one only in
two phases) are parallelized. According to the information
in table 1, the K-dimension is 16 for all blocks and the J-
dimension varies within 13, 21, 36 and 58. When the loop on
the K-dimension is executed in parallel, only 16 threads will
obtain work. Again, this limits the performance. Therefore,
best option is to use a two-level strategy, combining the inter
and intra block parallelism. This strategy generates 16 per
16 chunks of work. Therefore, even with a large number of
threads all them get work. But, the problem of unbalance
persists.

BT-MZ comes with a two load balancing algorithms. These
algorithms represent slightly more than a 5% of the total
code. The first algorithm, distributes blocks in the outer
level of parallelism trying all groups have a similar amount
of computational work. The second one assigns a number
a threads in the inner level of parallelism to each of the
outer groups based on the computational load of the zones
assigned to each outer group. Both methods are calculated
before the start of the computation based on knowledge of
the data shape and computational weight of the application.

4.2.2 SP-MZ class A
The SP-MZ benchmark is very similar to the BT-MZ bench-
mark. The main difference between both benchmarks is re-
lated to the sizes of the blocks in the input data structure.
In the SP-MZ benchmark the input data is composed by
16 three-dimensional blocks, all of them of the same size:

Block I-dimension J-dimension K-dimension Size Proportions
1 13 13 16 2704 1
2 21 13 16 4368 1.61
3 36 13 16 7488 2.76
4 58 13 16 12064 4.46
5 13 21 16 4368 1.61
6 21 21 16 7056 2.61
7 36 21 16 12096 4.47
8 58 21 16 19488 7.20
9 13 36 16 7488 2.76
10 21 36 16 12096 4.47
11 36 36 16 20736 7.66
12 58 36 16 33408 12.35
13 13 58 16 12064 4.46
14 21 58 16 19488 7.20
15 36 58 16 33408 12.35
16 58 58 16 53824 19.9

Table 1: Block sizes for BT-MZ class A.

32 x 32 x 16 (K, J, I dimensions, respectively). The com-
putation evolves over different phases, where each phase is
implemented by three nested loops, one per dimension. The
outermost loop in each phase is always parallelized.

As in the case of BT-MZ, a single level strategy can not be ef-
ficiently applied. Just exploiting the inter block parallelism
is not unbalanced at all, but suffers from the same limitation
regarding the number of threads to be used. Thus, again,
a two level strategy is the best option: combining inter and
intra block parallelism.

4.3 Methodology
4.3.1 BT-MZ
As it has been explained in previous section 4.2.1, the BT-
MZ benchmark incorporates two load balancing algorithms
which perform data and thread distribution. As it is possi-
ble to activate/deactivate each type of distribution, different
benchmark versions have been evaluated. The comparisons
were done under equal data distribution, since what we want
to evaluate is how powerful is the proposed mechanism for
automatic thread distribution. Thus, the performance re-
sults have been organized according to the data distribution.
The experiments have been separated in two different sets.
First, the data distribution algorithm was deactivated, and
the zones were distributed among the thread groups follow-
ing a STATIC scheme. Second, the data distribution was
defined by the existing algorithm in the benchmark. In each
case, four versions were tested with different thread distri-
butions. The automatic version dynamically computes the
thread distribution. This version was the only version using
our proposed framework for automatic thread distribution.
In all others, our framework was deactivated. The uni-
form version defined a uniform thread distribution among
the groups. The manual version performed a thread dis-
tribution computed by the load balancing algorithm in the
benchmark. The automatic version tries different distribu-
tions until it finds a stable distribution. The preassigned
version used the stable distribution obtained from the exe-
cution of the automatic version.

4.3.2 SP-MZ

The SP-MZ benchmark presents an input organized in equally
sized zones. Thus, no unbalance is produced in the outer-
most level of parallelism. Having a totally balanced input,
allowed to check that the proposed mechanisms adapt to
this situation.

Two versions of the benchmark were evaluated. The auto-
matic version works with the automatic thread distribution
mechanism. This version starts using a uniform thread dis-
tribution, and its execution allowed to check that the pro-
posed mechanism detects the absence of unbalance, and that
it does not change to a non-uniform thread distribution. The
manual version used a constant uniform thread distribution.
The adaptive mechanisms are deactivated. Comparing these
two versions we quantified the overheads in the thread dis-
tribution algorithm.

4.4 Evaluation in the NANOS environment

4.4.1 BT-MZ class A
Figure 6 shows the results for the BT-MZ benchmark. All
numbers are speed-up with serial time as base time. Graph-
ics in figure 6(a) shows the speed-up for all the versions using
a STATIC zone distribution (the data distribution mecha-
nism is deactivated). The automatic version obtained 18.01,
19.79 and 27.24 for 4, 8 and 16 groups. The uniform version
speed-ups were: 13.84, 11.76 and 10.96. When we compare
this numbers we clearly see that the automatic version com-
puted a thread distribution that balanced the application.
We conclude the same when we compare the uniform and
manual versions results. The numbers for the manual ver-
sion were: 19.35, 20.84 and 23.02. Again, the manual version
outperformed the uniform version.

The manual and automatic perform similarly but in the case
of 16 groups. With 16 groups the automatic version obtains
4 more points of speed-up. These results support our idea
that the thread distribution can be computed by the runtime
freeing the programmer of tasks of computing himself. Table
2 shows the thread distribution for each version. In the case
of the automatic version it shows the stable distribution.
The differences in performance between these two versions

Version Groups 4 Groups 8 Groups 16
automatic 3 3 8 18 1 2 1 3 4 7 3 13 1 1 1 1 1 1 1 2 1 1 2 4 1 2 4 8
manual 3 6 9 14 1 3 1 4 3 6 4 10 1 1 1 1 1 1 2 2 1 2 2 4 2 2 4 5

Table 2: BT-MZ class A thread distributions for STATIC zone distribution (NANOS environment)

(a) with STATIC zone distribution

(b) with zone clustering

Figure 6: BT-MZ class A speedups using 32 cpus
(NANOS environment)

are explained through the thread distribution obtained by
each version.

Comparing the automatic and preassigned versions we can
see how the initial phase of the automatic version affects its
performance. We consider the initial phase until a stable
thread distribution is found. The preassigned obtains 18.07,
19.95 and 27.23 points of speed-up with 4, 8 and 16 groups
respectively. From these numbers, which are statistically
identical, we can conclude that the automatic mechanisms
have a low overhead and the application can afford to use
them.

Figure 6(b) shows the performance numbers for all the ver-
sions using the zone distribution algorithm encoded in the

application. We reach similar conclusions using this distri-
bution scheme. The automatic and manual versions perform
better than the uniform version. This means that data dis-
tribution could not perfectly balance the application as a
non-uniform thread distribution was still necessary (for 8
and 16 groups). The automatic version performed better
than the manual version because it found better thread dis-
tributions. Table 3 shows the differences between the thread
distributions computed by the automatic and the manual
version. The automatic version and the preassigned version
had the same results. We can see, again, that the mechanism
overheads are low.

4.4.2 SP-MZ class A
Figure 7 shows the performance numbers, with 32 proces-
sors, for all the evaluated versions. The manual version ob-
tained 9.51, 16.34 and 24.28 points of speed-up with 4, 8
and 16 groups. Notice the differences in performance, de-
pending on the number of groups. We suspect that this is
due to locality effects. A lesser number of groups than the
number of zones causes that more than one zone is assigned
to the same group of threads. The worst scenario is with
4 groups where 4 zones are assigned to each group. In the
case of 16 groups, the zones were distributed one zone per
group of threads, so threads only work with one zone. The
same phenomena is observed in the evaluation of the auto-
matic version. This versions performs as the manual version.
With 4, 8 and 16 groups, the obtained speed-ups are 9.41,
16.42 and 24.29 respectively. The thread distribution mech-
anism was verified. With any number of groups, the auto-
matic version always defines a uniform thread distribution.
In the case of 4 groups, 8 threads were assigned per group.
With 8 and 16 groups, 4 and 2 threads were assigned to each
group, respectively. We conclude that the proposed mech-
anisms adapt well to balanced work distribution, without
introducing unreasonable overheads. Differences in perfor-
mance related to the number of groups need further research.
As it was pointed out in previous section 3,determining the
appropriate number of groups is out of the scope of this re-
search work. Only the thread distribution possibilities were
explored.

4.5 Evaluation in the IBM XL environment
4.5.1 BT-MZ class A
Figure 8(a) shows the results for the evaluation of BT-MZ
with a STATIC zone distribution. The automatic and the
manual versions outperformed the uniform version, which is
heavily unbalanced. The manual version is between a 59%
faster, with 4 groups, and a 119% faster, with 16 groups,
than the uniform version. The automatic version gains range
from a 48% with 4 groups to a 134% with 16 groups. This
means both algorithms computed balanced thread distribu-
tions. For 8 and 16 groups, the automatic version slightly
outperformed the manual version. When executed with 4
groups the speed-up of the manual version is higher. But,
the preassigned version, that used the distribution computed

Version Groups 4 Groups 8 Groups 16
automatic 8 8 8 8 7 4 4 4 4 3 3 3 7 4 4 2 2 2 2 1 1 1 1 1 1 1 1 1
manual 8 8 8 8 6 4 4 3 4 3 4 4 5 4 4 2 2 2 2 2 1 2 1 1 1 1 1 1

Table 3: BT-MZ class A thread distributions with zone clustering (NANOS environment)

Figure 7: SP-MZ class A speedups using 32 CPUs
(NANOS environment)

by the automatic version, performs as well as the manual ver-
sion. Table 4 shows the distributions used by both versions.
We can conclude there are some minor overheads in the li-
brary that reduce the gain of a good thread distribution.

Figure 6(b) shows the performance results for BT-MZ using
the zone clustering algorithm encoded in the application.
Defining 4 groups, the zone distribution was balanced. That
is why all the versions achieved the same speed-up. When 8
and 16 groups are defined, the manual version outperformed
the uniform distribution of threads: it was a 32% faster with
8 groups and a 121% faster with 16 groups. The automatic
version outperformed the uniform and the manual versions.
Compared to the uniform version, it was a 57% faster with
8 groups and a 130% faster with 16 groups. Compared to
the manual version, the increase in performance was a 19%
with 8 groups and a 4% of increase with 16 groups. Thread
distributions between the versions can be compared in table
5.

Versions using a STATIC zone distribution performed worst
than those that use the zone clustering algorithm. This is
because after clustering is applied the data distribution is
less unbalanced. Which is easier to balance. And being
more balanced they perform better.

Also note that for all the versions and with both data distri-
butions, as more groups were used the speed-up decreased.
When more groups are used there are fewer threads avail-
able to be moved between groups as each group needs at
least one thread. With a high number of groups, a perfect
thread distribution would assign fractions of threads to the
groups and this can not be done.

4.5.2 SP-MZ
Figure 9 shows the speed-up obtained by each evaluated ver-
sion of SP-MZ. Both versions, manual and automatic, ob-

(a) with STATIC zone distribution

(b) with zone clustering

Figure 8: BT-MZ class A speedups using 32 CPUs
(XL environment)

tained similar results. This means that mechanism overhead
is low in this environment too. The automatic version de-
termines, in all the cases, a uniform distribution of threads.

All speed-up numbers are similar independent of the num-
ber of groups used. This contrasts with the previous test
environment where the group number had a great influence
in performance.

5. RELATED WORK
Nested parallelism is an active area of research in the OpenMP
community. Several experiments [6, 14, 1, 19, 21, 15] present
the possibility of mixing more than one programming model
for exploiting nested parallelism. Typically, applications,
which execute under such parallel strategy, define a first
level of parallelism using a distributed memory paradigm
plus a second level of parallelism implemented with shared

Version Groups 4 Groups 8 Groups 16
automatic 3 5 10 14 1 2 1 4 2 6 3 13 1 1 1 1 1 1 2 2 1 2 2 4 1 2 4 6
manual 3 6 9 14 1 3 1 4 3 6 4 10 1 1 1 1 1 1 2 2 1 2 2 4 2 2 4 5

Table 4: BT-MZ class A thread distributions for STATIC zone distribution (XL environment)

Version Groups 4 Groups 8 Groups 16
automatic 8 8 8 8 7 4 5 3 4 3 3 3 7 4 4 2 2 2 2 1 1 1 1 1 1 1 1 1
manual 8 8 8 8 6 4 4 3 4 3 4 4 5 4 4 2 2 2 2 2 1 2 1 1 1 1 1 1

Table 5: BT-MZ class A thread distributions with zone clustering (XL environment)

Figure 9: SP-MZ class A speedups using 32 CPUs
(XL environment)

memory model, usually programmed with OpenMP. Results
showed that nested parallelism performs better than conven-
tional single level strategies.

Other authors worked with nested parallelism in a pure
OpenMP model. Experiments with nested parallelism [2, 5]
pointed out the main problems to get a good performance.
Several authors [13, 4, 3] have argued that a thread dis-
tribution will solve these problems. The thread grouping
mechanism was studied and organized as a proposal to ex-
tend the OpenMP language [2]: constructs were defined to
allow programmer specify the most appropriate thread dis-
tribution between the levels of parallelism and. Also, this
proposal presented an optimal algorithm to compute the
thread distribution. But, all these works rely on the pro-
grammer providing the required information: the number
of branches in the outermost parallel level and the com-
putational weight associated to each branch. Programmers
can obtain the computational weight through representa-
tive parameters of the computation, such as the amount of
memory used in each branch or other specific characteristic
of the application (number of ”elements” treated by each
computational branch, number of iterations, ...).

Thread distribution has been showed to be necessary and
critical for performing well when exploiting nested paral-
lelism. After several contributions, an open question re-
mained: would it be possible to avoid the programmer in-
tervention in order to obtain the most suitable thread dis-
tribution? In this paper we propose a mechanism to do it,
based on the previous works of Duran et al. [7, 10]. Those
works introduced the facility of sampling the execution time
for each branch in the outermost level of parallelism. We

use these measurements as an approximation of the compu-
tational weight in the overall nest of parallelism. From these
weights is possible to obtain a suitable thread distribution
for nesting parallelism exploitation.

6. CONCLUSIONS AND FUTURE WORK
This paper explored the viability, in the context of OpenMP
nested parallelism, of a runtime mechanism to distribute
threads in the inner level of parallelism between different
groups in the outer level. Our proposal works by gathering
information, at runtime, about the time each group spent
doing useful work. Based on these measures, an algorithm
calculates a new thread distribution that is applied after-
wards. We have implemented the algorithm in two different
environments which shows that the proposal is not depen-
dant on a specific runtime implementation.

Our results confirmed that the proposed runtime mechanism
performs as well, or even better, as algorithms handcrafted
by the programmer of the application. Even, when applica-
tion work well with a uniform distribution the mechanism
shows a low overhead. This suggests that a runtime could
use our mechanism as a default option for nested parallelism.

Results also showed that the different environments have
different behavior with the same application and input. As
the runtime technique reacts to the architectural differences
(because they also imply differences in the sampled times)
a runtime library that uses the techniques described in the
paper becomes more portable, from a performance point of
view, across different platforms.

As the evaluation showed, the number of groups is a criti-
cal parameter in the performance of an application. Future
work will deal with the problem of automatically deciding
how many groups should be used at the outer level. This will
allow an optimal exploitation of nested parallelism without
programmer intervention.

7. ACKNOWLEDGMENTS
This research has been supported by the Ministry of Science
and Technology of Spain under contract TIN2004-07739-
C02-01, the European Union under contract IST-2001-33071
and the IBM CAS program.

8. ADDITIONAL AUTHORS
Additional authors: Xavier Martorell (Technical University
of Catalonia, email: xavim@ac.upc.edu), Eduard Ayguadé
(Technical University of Catalonia, email: eduard@ac.upc.

edu), Jesús Labarta (Technical University of Catalonia, email:
jesus@ac.upc.edu) and Raúl Silvera (IBM Toronto Lab,
email: rauls@ca.ibm.com).

9. REFERENCES
[1] D. an May and S. Schmidt. From a vector computer to

an mp-cluster - hybrid parallelization of the cfd code
panta. In Proceedings on the 2nd European Workshop
on OpenMP (EWOMP2000), September 2000.

[2] E. Ayguade, X. Martorell, J. Labarta, M. Gonzalez,
and N. Navarro. Exploiting multiple levels of
parallelism in openmp: A case study. In Proceedings of
the 1999 International Conference on Parallel
Processing, September 1999.

[3] E. Ayguadé, M. González, X. Martorell, and G. Jost.
Employing nested openmp for the parallelization of
multi-zone computational fluid dynamics applications.
In Proceedings of the International Parallel and
Distributed Processing Symposium, April 2004.

[4] R. Blikberg. Parallelizing amrclaw by nesting
techniques. In Proceedings on the 4th European
Workshop on OpenMP (EWOMP2002), September
2002.

[5] R. Blikberg and T. Sørevik. Nested parallelism:
Allocation of processors to tasks and openmp
implementation. In Proceedings of the 1999
International Conference on Parallel Processing,
September 1999.

[6] T. Boku, S. Yoshikawa, M. Sato, C. G. Hoover, and
W. G. Hoover. Implementation and performance
evaluation of spam particle code with openmp-mpi
hybrid programming. In Proceedings of the 3rd
European Workshop on OpenMP (EWOMP2001),
September 2001.

[7] J. Corbalán, A. Duran, and J. Labarta. Dynamic load
balancing of mpi+openmp applications. In Proceedings
of the International Conference on Parallel Processing
(ICPP2004), August 2004.

[8] I. Corporation. Power4 system microarchitecture.
October 2001.

[9] R. V. der Wijngaart and H.Jin. Nas parallel
benchmarks, multi-zone versions. Technical report,
NASA Ames Research Center, July 2003. NAS-03-010.

[10] A. Duran, R. Silvera, J. Corbalán, and J. Labarta.
Runtime adjustment of parallel nested loops. In
Proceedings of the Workshop on OpenMP Applications
and Tools (WOMPAT2004), May 2004.

[11] M. Gonzalez, E. Ayguade, J. Labarta, X. Martorell,
N. Navarro, and J. Oliver. Nanoscompiler: A research
platform for openmp extensions. In Proceedings on the
1st European Workshop on OpenMP (EWOMP1999),
September 1999.

[12] M. Gonzalez, E. Ayguade, X. Martorell, J. Labarta,
and P. V. Luong. Dual-level parallelism exploitation
with openmp in coastal ocean circulation modeling. In
Proceedings of the International Workshop on

OpenMP: Experiences and Implementations
(WOMPEI 2002), 2002.

[13] M. González, J. Oliver, X. Martorell, E. Ayguadé,
J. Labarta, and N. Navarro. Openmp extensions for
thread groups and their run-time support. Lecture
Notes in Computer Science, 2017:324–332, 2001.

[14] P. Kloos, F. Mathey, and P. Blaise. Openmp and mpi
programming with a cg algorithm. In Proceedings of
the 2nd European Workshop on OpenMP
(EWOMP2000), September 2000.

[15] P. Lanucara and S. Rovida. Conjugate-gradient
algorithms: an mpi-openmp implementation on
distributed shared memory systems. In Proceedings on
the 1st European Workshop on OpenMP
(EWOMP1999), September 1999.

[16] J. Laudon and D. Lenoski. The sgi origin: A ccnuma
highly scalable server. In Proceedings of the 24th.
Annual International Symposium on Computer
Architecture, (ISCA97), 1997.

[17] X. Martorell, E. Ayguadé, N. Navarro, J. Corbalan,
M. Gonzàlez, and J. Labarta. Thread fork/join
techniques for multi-level parallelism exploitation in
numa multiprocessors. In Proceedings of the 13th.
ACM International Conference on Supercomputing
(ICS99), June 1999.

[18] X. Martorell, E. Ayguadé, N. Navarro, and J. Labarta.
A library implementation of the nano-threads
programming model. In Proceedings of the 2nd.
Europar Conference (EUROPAR1996), August 1996.

[19] F. Mathey, P. Kloos, and P. Blaise. Openmp
optimisation of a parallel mpi cfd code. In Proceedings
on the 2nd European Workshop on OpenMP
(EWOMP2000), September 2000.

[20] O. Organization. Openmp fortran application
interface, v. 2.0. www.openmp.org, June 2000.

[21] L. Smith. Epcc development and performance of a
hybrid openmp/mpi quantum monte carlo code. In
Proceedings of the 1st European Workshop on
OpenMP (EWOMP1999), September 1999.

