
An Experimental Evaluation of the New

OpenMP Tasking Model

Eduard Ayguadé1, Alejandro Duran1, Jay Hoeflinger2, Federico Massaioli3,
Xavier Teruel1

1 BSC-UPC
2 Intel

3 CASPUR

Abstract. The OpenMP standard was conceived to parallelize dense
array-based applications, and it has achieved much success with that.
Recently, a novel tasking proposal to handle unstructured parallelism in
OpenMP has been submitted to the OpenMP 3.0 Language Commit-
tee. We tested its expressiveness and flexibility, using it to parallelize a
number of examples from a variety of different application areas. Fur-
thermore, we checked whether the model can be implemented efficiently,
evaluating the performance of an experimental implementation of the
tasking proposal on an SGI Altix 4700, and comparing it to the perfor-
mance achieved with Intel’s Workqueueing model and other worksharing
alternatives currently available in OpenMP 2.5. We conclude that the
new OpenMP tasks allow the expression of parallelism for a broad range
of applications and that they will not hamper application performance.

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several
vendors in the 1990s. It was structured around parallel loops and was meant to
handle dense numerical applications. The simplicity of its original interface, the
use of a shared memory model, and the fact that the parallelism of a program
is expressed in directives that are loosely-coupled to the code, all have helped
OpenMP become well-accepted today. However, the sophistication of parallel
programmers has grown in the last 10 years since OpenMP was introduced, and
the complexity of their applications is increasing. Therefore, OpenMP is in the
process of adding a tasking model to address this new programming landscape.
The new directives allow the user to identify units of independent work, leaving
the decisions of how and when to execute them to the runtime system.

In this paper, we have attempted to evaluate this new tasking model. We
wanted to know how the new tasking model compared to traditional OpenMP
worksharing and the existing Intel workqueueing model, both in terms of expres-
sivity and performance. In order to evaluate expressivity, we have parallelized a
number of problems across a wide range of application domains, using the tasking
proposal. Performance evaluation has been done on a prototype implementation

1 #pragma omp paral lel pr i va t e (p)
2 {
3 #pragma omp for

4 for (i =0; i< n l i s t s ; i++) {
5 p = l i s t h e a d s [i] ;
6 while (p) {
7 #pragma omp task

8 proc e s s (p)
9 p=next (p) ;

10 }
11 }
12 }

Fig. 1. Parallel pointer chasing on
multiple lists using task

1 void t r a v e r s e (node ∗p , bool post)
2 {
3 i f (p−> l e f t)
4 #pragma omp task

5 t r a v e r s e (p−>l e f t , post) ;
6 i f (p−>r i gh t)
7 #pragma omp task

8 t r a v e r s e (p−>r ight , post) ;
9 i f (post) { /∗ p o s t o r d e r ! ∗/

10 #pragma omp taskwait

11 }
12 proc e s s (p) ;
13 }

Fig. 2. Parallel depth-first tree
traversal

of the tasking model. Performance results must be treated as preliminary, al-
though we have validated the performance of our implementation against the
performance of the commercial Intel workqueueing model implementation[1].

2 Motivation and related work

The task parallelism proposal under consideration by the OpenMP Language
committee [2] gives programmers a way to express patterns of concurrency that
do not match the worksharing constructs defined in the current OpenMP 2.5
specification.The proposal addresses common operations like complex, possibly
recursive, data structure traversal, and situations which could easily cause load
imbalance. The efficient parallelization of these algorithms using the 2.5 OpenMP
standard is not impossible, but requires extensive program changes, such as
run-time data structure transformations. This implies significant hand coding
and run-time overhead, reducing the productivity that is typical of OpenMP
programming[3].

Figure 1 illustrates the use of the new omp task1 construct from the proposal.
It creates a new flow of execution, corresponding to the construct’s structured
block. This flow of execution is concurrent to the rest of the work in the parallel
region, but its execution can be performed only by a thread from the current
team. Notice that this behavior is different from that of worksharing constructs,
which are cooperatively executed by the existing team of threads. Execution of
the task region does not necessarily start immediately, but can be deferred until
the runtime schedules it.

The p pointer variable used inside the tasks in Figure 1 is implicitly de-
termined firstprivate, i.e. copy constructed at task creation from the original
copies used by each thread to iterate through the lists. This default was adopted
in the proposal to balance performance, safety of use, and convenience for the
programmer. It can be altered using the standard OpenMP data scoping clauses.

1 This paper will express all code in C/C++, but the tasking proposal includes the
equivalent directives in Fortran.

The new #pragma omp taskwait construct used in Figure 1 suspends the
current execution flow until all tasks it generated have been completed. The
semantics of the existing barrier construct is extended to synchronize for com-
pletion of all generated tasks in the team.

For a programming language extension to be successful, it has to be useful,
and must be checked for expressiveness and productivity. Are the directives able
to describe explicit concurrency in the problem? Do data scoping rules, defaults
and clauses match the real programmers’ needs? Do common use cases exist
that the extension does not fulfill, forcing the programmer to add lines of code
to fill the gap? The two examples above, while illustrative, involve very basic
algorithms. They cannot be considered representative of a real application kernel.

In principle, the more concurrency that can be expressed in the source code,
the more the compiler is able to deliver parallelism. However, factors like subtle
side effects of data scoping, or even missing features, could hamper the actual
level of parallelism which can be achieved at run-time. Moreover, parallelism per
se does not automatically imply good performance. The semantics of a directive
or clause can have unforeseen impact on object code or runtime overheads. In a
language extension process, this aspect should also be checked thoroughly, with
respect to the existing standard and to competing models.

The suitability of the current OpenMP standard to express irregular forms
of parallelism was already investigated in the fields of dense linear algebra [4, 5],
adaptive mesh refinement [6], and agent-based models [7].

The Intel workqueueing model [8] was the first attempt to add dynamic task
generation to OpenMP. The model, available as a proprietary extension in In-
tel compilers, allows hierarchical generation of tasks by the nesting of taskq

constructs. Synchronization of descendant tasks is controlled by means of the
default barrier at the end of taskq constructs. The implementation exhibits
some overhead problems [7] and other performance issues [9].

In our choice of the application kernels to test drive the OpenMP tasking
proposal, we were also inspired by the classification of different application do-
mains proposed in [10], which addresses a much broader range of computations
than traditional in the HPC field.

3 Programming with OpenMP Tasks

In this section we describe all the problems we have parallelized with the new
task proposal. We have worked on applications across a wide range of domains
(linear algebra, sparse algebra, servers, branch and bound, etc) to test the expres-
siveness of the proposal. Some of the applications (multisort, fft and queens) are
originally from the Cilk project[11], some others (pairwise alignment, connected
components and floorplan) come from the Application Kernel Matrix project
from Cray[12] and two (sparseLU and user interface) have been developed by
us. These kernels were not chosen because they were the best representatives of
their class but because they represented a challenge for the current 2.5 OpenMP
standard and were publicly available.

We have divided them into three categories. First were those applications that
could already be easily parallelized with current OpenMP worksharing but where
the use of tasks allows the expression of additional parallelism. Second were
those applications which require the use of nested parallelism to be parallelized
by the current standard. Nested parallelism is an optional feature and it is not
always well supported. Third were those applications which would require a
great amount of effort by the programmer to parallelize with OpenMP 2.5 (e.g.
by programming their own tasks).

3.1 Worksharing versus tasking

SparseLU The sparseLU kernel computes an LU matrix factorization. The
matrix is organized in blocks that may not be allocated. Due to the sparseness
of the matrix, a lot of imbalance exists. This is particularly true for the the bmod
phase (see Figure 3). SparseLU can be parallelized with the current worksharing
directives (using an OpenMP for with dynamic scheduling for loops on lines
10, 15 and 21 or 23). For the bmod phase we have two options: parallelize the
outer (line 21) or the inner loop (line 23). If the outer loop is parallelized, the
overhead is lower but the imbalance is greater. On the other hand, if the inner
loop is parallelized the iterations are smaller which allows a dynamic schedule
to have better balance but the overhead of the worksharing is much higher.

Using tasks, first we only create work for non-empty matrix blocks. We also
create smaller units of work in the bmod phase with an overhead similar to the
outer loop parallelization. This reduces the load imbalance problems.

It is interesting to note that, if the proposed extension included mechanisms
to express dependencies among tasks, it would be possible to express additional
parallelism that exists between tasks created in lines 12 and 17 and tasks created
in line 25. Also it would be possible to express the parallelism that exists across
consecutive iterations of the kk loop.
Protein pairwise alignment This application aligns all protein sequences
from an input file against every other sequence. The alignments are scored and
the best score for each pair is output as a result. The scoring method is a full
dynamic programming algorithm. It uses a weight matrix to score mismatches,
and assigns penalties for opening and extending gaps. It uses the recursive Myers
and Miller algorithm to align sequences.

The outermost loop can be parallelized, but the loop is heavily unbalanced,
although this can be partially mitigated with dynamic scheduling. Another prob-
lem is that the number of iterations is too small to generate enough work when
the number of threads is large. Also, the loops of the different passes (forward
pass, reverse pass, diff and tracepath) can also be parallelized but this paral-
lelization is much finer so it has higher overhead.

We used OpenMP tasks to exploit the inner loop in conjunction with the
outer loop. Note that the tasks are nested inside an OpenMP for worksharing
construct. This breaks iterations into smaller pieces, thus increasing the amount
of parallel work but at lower cost than an inner loop parallelization because they
can be excuted inmediately.

1 int sparseLU () {
2 int i i , j j , kk ;
3#pragma omp paral lel

4#pragma omp single nowait

5 for (kk=0; kk<NB; kk++) {
6 lu0 (A[kk] [kk]) ;
7 /∗ fwd pha s e ∗/
8 for (j j=kk+1; j j <NB; j j ++)
9 i f (A[kk] [j j] != NULL)

10 #pragma omp task

11 fwd (A[kk] [kk] , A[kk] [j j]) ;
12 /∗ b d i v ph a s e ∗/
13 for (i i=kk+1; i i <NB; i i ++)
14 i f (A[i i] [kk] != NULL)
15 #pragma omp task

16 bdiv (A[kk] [kk] , A[i i] [kk]) ;
17 #pragma omp taskwait

18 /∗ bmod pha s e ∗/
19 for (i i=kk+1; i i <NB; i i ++)
20 i f (A[i i] [kk] != NULL)
21 for (j j=kk+1; j j <NB; j j++)
22 i f (A[kk] [j j] != NULL)
23 #pragma omp task

24 {
25 i f (A[i i] [j j]==NULL) A[i i] [j j]= a l l o c a t e c l e an b l o c k () ;
26 bmod(A[i i] [kk] , A[kk] [j j] , A[i i] [j j]) ;
27 }
28 #pragma omp taskwait

29 }
30 }

Fig. 3. Main code of SparseLU with OpenMP tasks

3.2 Nested parallelism versus tasking

Floorplan The Floorplan kernel computes the optimal floorplan distribution of
a number of cells. The algorithm is a recursive branch and bound algorithm. The
parallelization is straight forward (see figure 5). We hierarchically generate tasks
for each branch of the solution space. But this parallelization has one caveat. In
these kind of algorithms (and others as well) the programmer needs to copy the
partial solution up to the moment to the new parallel branches (i.e. tasks). Due
to the nature of C arrays and pointers, the size of it becomes unknown across
function calls and the data scoping clauses are unable to perform a copy on their
own. To ensure that the original state does not disappear before it is copied, a
task barrier is added at the end of the function. Other possible solutions would
be to copy the array into the parent task stack and then capture its value or
allocate it in heap memory and free it at the end of the child task. In all these
solutions, the programmer must take special care.

Multisort, FFT and Strassen Multisort is a variation of the ordinary merge-
sort. It sorts a random permutation of n 32-bit numbers with a fast parallel
sorting algorithm by dividing an array of elements in half, sorting each half re-
cursively, and then merging the sorted halves with a parallel divide-and-conquer
method rather than the conventional serial merge. When the array is too small,
a serial quicksort is used so the task granularity is not too small. To avoid the

1#pragma omp for

2 for (s i = 0 ; s i < nseqs ; s i++) {
3 l en1 = compute sequence l ength (s i +1);
4

5 /∗ compa re t o t h e o t h e r s e q u e n c e s ∗/
6 for (s j = s i + 1 ; s j < nseqs ; s j++) {
7 #pragma omp task

8 {
9 l en2 = compute sequence l ength (s j +1);

10 c ompute sc o r e pena l t i e s (. . .) ;
11 f orward pass (. . .) ;
12 r e ve r s e p a s s (. . .) ;
13 d i f f (. . .) ;
14 mm score = tracepath (. . .) ;
15 i f (l en1 == 0 | | l en2 == 0) mm score = 0 . 0 ;
16 else mm score /= (double) MIN(len1 , l en2) ;
17

18 #pragma omp cr i t i c a l

19 p r i n t s c o r e () ;
20 }
21 }
22 }

Fig. 4. Main code of the pairwise aligment with tasks

overhead of quicksort, an insertion sort is used for arrays below a threshold of
20 elements.

The parallelization with tasks is straight forward and makes use of a few
task and taskgroup directives (see figure 6), the latter being the structured
form of the taskwait construct introduced in section 2.

FFT computes the one-dimensional Fast Fourier Transform of a vector of n

complex values using the Cooley-Tukey algorithm. Strassen’s algorithm for mul-
tiplication of large dense matrices uses hierarchical decomposition of a matrix.
The structure of the parallelization of these two kernels is almost identical to
the one used in multisort, so we will omit it.

N Queens problem This program, which uses a backtracking search algorithm,
computes all solutions of the n-queens problem, whose objective is to find a
placement for n queens on an n x n chessboard such that none of the queens
attacks any other.

In this application, tasks are nested dynamically inside each other. As in the
case of floorplan, the state needs to be copied into the newly created tasks so
we need to introduce additional synchronizations (in the form of taskgroup) in
order for the original state to be alive when the tasks start so they can copy it.

Another issue is the need to count all the solutions found by different tasks.
One approach is to surround the accumulation with a critical directive but this
would cause a lot of contention. To avoid it, we used threadprivate variables
that are reduced within a critical directive to the global variable at the end
of the parallel region.

Concom (Connected Components) The concom program finds all the con-
nected components of a graph. It uses a depth first search starting from all the
nodes of the graph. Every node visited is marked and not visited again.

1 void add c e l l (int id , coor FOOTPRINT, ibrd BOARD, struct c e l l ∗CELLS) {
2 int i , j , nn , area ; ib rd board ; coor f oo tp r i n t , NWS[DMAX] ;
3

4 for (i = 0 ; i < CELLS[id] . n ; i++) {
5 nn = c ompu t e p o s s i b l e l o c a t i o n s (id , i , NWS, CELLS) ;
6 /∗ f o r a l l p o s s i b l e l o c a t i o n s ∗/
7 for (j = 0 ; j < nn ; j++) {
8#pragma omp task pr i va t e (board , f oo tp r i n t , area) \
9 shared (FOOTPRINT,BOARD,CELLS)

10 { /∗ copy p a r e n t s t a t e ∗/
11 struct c e l l c e l l s [N+1] ;
12 memcpy(c e l l s ,CELLS, s izeof (struct c e l l)∗ (N+1));
13 memcpy(board , BOARD, s izeof (ib rd)) ;
14

15 c ompute c e l l e x t en t (c e l l s , id ,NWS, j) ;
16

17 /∗ i f t h e c e l l c a nno t be l a y e d down , p r u n e s e a r c h ∗/
18 i f (! lay down (id , board , c e l l s)) {
19 goto end ;
20 }
21 area = compute new footpr int (f oo tp r i n t ,FOOTPRINT, c e l l s [id]) ;
22

23 /∗ i f l a s t c e l l ∗/
24 i f (c e l l s [id] . next == 0) {
25 i f (area < MIN AREA)
26 #pragma omp cr i t i ca l

27 i f (area < MIN AREA) s av e b e s t s o l u t i o n () ;
28 } else i f (area < MIN AREA)
29 /∗ o n l y c o n t i n u e i f a r e a i s s m a l l e r t o b e s t a r ea , o t h e r w i s e p r u n e ∗/
30 a dd c e l l (c e l l s [id] . next , f oo tp r i n t , board , c e l l s) ;
31 end : ;
32 }
33 }
34 }
35 #pragma omp taskwait

36 }

Fig. 5. C code for the Floorplan kernel with OpenMP tasks

The parallelization with tasks involves just four directives: a parallel directive,
a single directive, a task directive and a critical directive. This is a clear example
of how well tasks map into tree-like traversals.

3.3 Almost impossible in OpenMP 2.5

Web server We used tasks to parallelize a small web server called Boa. In this
application, there is a lot of parallelism, as each client request to the server can
be processed in parallel with minimal synchronizations (only update of log files
and statistical counters). The unstructured nature of the requests makes it very
difficult to parallelize without using tasks.

On the other hand, obtaining a parallel version with tasks requires just a
handful of directives, as shown in figure 8. Basically, each time a request is
ready, a new task is created for it.

The important performance metric for this application is response time. In
the proposed OpenMP tasking model, threads are allowed to switch from the
current task to a different one. This task switching is needed to avoid starvation,

1 void s o r t (ELM ∗ low , ELM ∗tmp , long s i z e) {
2 i f (s i z e < qu i c k s i z e) {
3 /∗ q u i c k s o r t when r e a c h s i z e t h r e s h o l d ∗/
4 qu i ck so r t (low , low + s i z e − 1) ;
5 return ;
6 }
7 quarte r = s i z e / 4 ;
8

9 A = low ; tmpA = tmp ;
10 B = A + quarte r ; tmpB = tmpA + quarte r ;
11 C = B + quarte r ; tmpC = tmpB + quarte r ;
12 D = C + quarte r ; tmpD = tmpC + quarte r ;
13

14 #pragma omp taskgroup {
15 #pragma omp task

16 s o r t (A, tmpA, quarte r) ;
17 #pragma omp task

18 s o r t (B, tmpB, quarte r) ;
19 #pragma omp task

20 s o r t (C, tmpC, quarte r) ;
21 #pragma omp task

22 s o r t (D, tmpD, s i z e − 3 ∗ quarte r) ;
23 }
24 #pragma omp taskgroup {
25 #pragma omp task

26 merge (A, A+quarter −1, B, B+quarter −1, tmpA) ;
27 #pragma omp task

28 merge (C, C+quarter −1, D, low+s i z e −1, tmpC) ;
29 }
30 merge (tmpA, tmpC−1, tmpC, tmpA+s i z e −1, A) ;
31 }

Fig. 6. Sort function using OpenMP tasks

and prevent overload of internal runtime data structures when the number of
generated tasks overwhelms the number of threads in the current team. The im-
plementation is allowed to insert implicit switching points in a task region, wher-
ever it finds appropriate. The taskyield construct inserts an explicit switching
point, giving programmers full control. The experimental implementation we
used in our tests is not aggressive in inserting implicit switching points. To im-
prove the performance of the Web server, we inserted a taskyield construct
inside the serve request function so that no request is starved.

User Interface We developed a small kernel that simulates the behavior of
user interfaces (UI). In this application, the objective of using parallelism is
to obtain a lower response time rather than higher performance (although, of
course, higher performance never hurts). Our UI has three possible operations,
which are common to most user interfaces: start some work unit, list current
ongoing work units and their status, and cancel an existing work unit.

The work units map directly into tasks (as can be seen in Figure 9). The
thread executing the single construct will keep executing it indefinitely. To be
able to communicate between the interface and the work units, the programmer
needs to add new data structures. We found it difficult to free these structures
from within the task because it could easily lead to race conditions (e.g. free the
structure while listing current work units). We decided to just mark them to be

1 void CC (int i , int cc) {
2 int j , n ;
3 /∗ i f node ha s n o t been v i s i t e d ∗/
4 i f (! v i s i t e d [i]) {
5 /∗ add node t o c u r r e n t component ∗/
6 add to component (i , cc) ; /∗ omp c r i t i c a l i n s i d e ∗/
7

8 /∗ add each n e i g h b o r ’ s s u b t r e e t o t h e c u r r e n t component ∗/
9 for (j = 0 ; j < nodes [i] . n ; j++) {

10 n = nodes [i] . ne ighbor [j] ;
11 #pragma omp task

12 CC(n , cc) ;
13 }
14 }
15 }
16

17 void main () {
18 i n i t g raph () ;
19 cc = 0 ;
20 /∗ f o r a l l n o d e s . . . u n v i s i t e d nod e s s t a r t a new component ∗/
21 for (i = 0 ; i < NN; i++)
22 i f (! v i s i t e d [i]) {
23 #pragma omp paral lel

24 #pragma omp single

25 CC(i , cc) ;
26 cc++;
27 }
28

29 }

Fig. 7. Connected components code with OpenMP tasks

freed by the main thread when it knows that no tasks are using it. In practice,
this might not always be possible and complex synchronizations may be needed.

We also used the taskyield directive to avoid starvation.

4 Evaluation

4.1 The prototype implementation

In order to test the proposal in terms of expressiveness and performance, we
have developed our own implementation of the proposed tasking model. We
developed the prototype on top of a research OpenMP compiler (source-to-source
restructuring tool) and runtime infrastructure [13].

The implementation uses execution units, that are managed through differ-
ent execution queues (usually one global queue and one local queue for each
thread used by the application). The library offers different services (fork/join,
synchronize, dependence control, environment queries, . . .) that can provide the
worksharing and structured parallelism expressed by the OpenMP 2.5 standard.
We added several services to the library to give support to the task scheme.
The most important change in the library was the offering of a new scope of
execution that allows the execution of independent units of work that can be
deferred, but still bound to the thread team (the concept of task, see section 2).

1#pragma omp paral lel

2#pragma omp single nowait

3 while (! end) {
4 proc e s s s i g n a l s (i f any)
5 f o r e ach r eque s t from the blocked queue {
6 i f (r e que s t dependences are met) {
7 ex t rac t from the blocked queue
8 #pragma omp task

9 s e r v e r e qu e s t (r e que s t) ;
10 }
11 }
12 i f (new connect ion) {
13 a c c e p t i t () ;
14 #pragma omp task

15 s e r v e r equ e s t (new connect ion) ;
16 }
17 s e l e c t () ;
18 }

Fig. 8. Boa webserver main loop with OpenMp tasks

When the library finds a task directive, it is able to decide (according to
internal parameters: maximum depth level in task hierarchy, maximum number of
tasks or maximum number of tasks by thread) whether to execute it immediately
or create a work unit that will be queued and managed through the runtime
scheduler. This new feature is provided by adding a new set of queues: team
queues. The scheduler algorithm is modified in order to look for new work in the
local, team and global queues respectively.

Once the task is first executed by a thread, and if the task has suspend/resume
points, we can expect two different behaviors. First, the task could be bound to
that thread (so, it can only be executed by that thread) and second, the task
is not attached to any thread and can be executed by any other thread of the
team. The library offers the possibility to move a task from the team queues to
the local queues. This ability covers the requirements of the untied clause of
the task construct, which allows a task suspended by one thread to be resumed
by a different one.

The synchronization construct is provided through task counters that keep
track of the number of tasks which were created in the current scope (the current
scope can be a task or taskgroup construct). Each task has in its own structure
with a successor field that points to the counter it must decrement.

4.2 Evaluation methodology

We have already shown the flexibility of the new tasking proposal, but what
about its performance? To determine this, we have evaluated the performance
of the runtime prototype against other options.

We have run all the previous benchmarks but we do not include the results for
the webserver (due to a lack of the proper network environment) and the simple-
ui (because it has an interactive behavior). For each application we have tried
each possible OpenMP version: a single level of parallelism (labeled OpenMP

1 void Work : : exec () {
2 while (! end) {
3 // do some amount o f work
4 #pragma omp taskyield

5 }
6 }
7

8 void s t a r t work (. . .) {
9 Work ∗work = new Work (. . .) ;

10 l i s t o f w o r k s . push back (work) ;
11 #pragma omp task

12 {
13 work−>exec () ;
14 work−>d i e () ;
15 }
16 gc () ;
17 }
18

19 void u i () {
20 . . .
21 i f (u se r i npu t == START WORK) sta r t work (. . .) ;
22 }
23

24 void main (int argc , char ∗∗ argv) {
25 #pragma omp paral lel

26 #pragma omp single nowait

27 u i () ;
28 }

Fig. 9. Simplified code for a user interface with OpenMP tasks

worksharing), multiple levels of parallelism (labeled OpenMP nested) and with
OpenMP tasks. For those applications that could be parallelized with Intel’s
taskqueues, we also evaluated them with taskqueues.

Table 1 summarizes the different input parameters and the experiments run
for each application.

We compiled the codes with taskqueues and nested parellelism with Intel’s
icc compiler version 9.1 at the default optimization level. The versions using
tasks use our OpenMP source-to-source compiler and runtime prototype imple-
mentation, using icc as the backend compiler. The speedup of all versions is
computed, using as a baseline the serial version of each kernel. We used Intel’s
icc compiler to compile the serial version.

All the benchmarks have been evaluated on an SGI Altix 4700 with 128 pro-
cessors, although they were run on a cpuset comprising a subset of the machine
to avoid interference with other running applications.

4.3 Results

In figure 10 we show the speedup for all the kernels (except the concom) with the
different evaluated versions: OpenMP worksharing, OpenMP nested, OpenMP
tasks and Intel’s taskqueues. We do not show the results of the concom kernel
because the slowdowns prevented us from running the experiments due to time
constraints. These slowdowns were not only affecting the OpenMP task version

Application Input parameters Experiments
strassen Matrix size of 1280x1280 nested, tasks, taskqueues
multisort Array of 32M of integers nested, tasks, taskqueues
fft Array of 32M of complex

numbers
nested, tasks, taskqueues

queens Size of the board is 14x14. nested, tasks, taskqueues
alignment 100 sequences worksharing, nested, tasks
floorplan 20 cells nested, tasks, taskqueues
concom 500000 graph nodes,

100000 edges
nested, tasks, taskqueues

sparseLU Sparse matrix of 50 blocks
of 100x100

worksharing, nested,
tasks, taskqueues

Table 1. Input parameters for each application

but also the OpenMP nested and Intel’s taskqueues. The main reason behind
the slowdown is granularity. The tasks (or parallel regions in the nested case)
are so fine grained that it is impossible to scale without aggregrating them. That
is something that currently none of the models supports.

For a small number of threads (up to 4) we see that the versions using the
new OpenMP tasks perform about the same as those using current OpenMP
(worksharing and nested versions). But, as we increase the number of processors
the task version scales much better, always improving over the other versions
except for the multisort kernel, which has the same performance. These improve-
ments are due to different factors, depending on the kernel: better load balance
(sparseLU, alignment, queens, fft, strassen and floorplan), greater amount of
parallel work (alignment and sparseLU) and less overhead (alignment). Overall,
we can see that the new task proposal has the potential to benefit a wide range
of application domains.

When we compare how the current prototype performs against a well estab-
lished implementation of tasking, Intel’s taskqueue, we can see that in most
of the kernels the obtained speedup is almost the same and in a few cases
(sparseLU and floorplan), even better. Only in two of them (fft and strassen)
does taskqueue perform better, and even then, not by a large amount.

Taking into account that the prototype implementation has not been well
tuned, we think that the results show that the new model will allow codes to
obtain at least the performance of Intel’s taskqueue and is even more flexible.

5 Suggestions for future work

While the performance and flexibility of the new OpenMP tasking model seem
good, there is still room for improvement. We offer these suggestions for ways
to improve the usability and performance of the model, based on our experience
with the applications described in this paper.

(a) Multisort evaluation (b) N Queens evaluation

(c) FFT evaluation (d) Strassen evaluation

(e) SparseLU evaluation (f) Alignment evaluation

(g) Floorplan evaluation

Fig. 10. Evaluation results for all the kernels. Speedups use serial version as
baseline

One problem we encountered consistently in our programming was the need
to capture the value of a data structure when all we had was a pointer to it.
If a pointer is used in a firstprivate directive, only the pointer is captured.
In order to capture the data structure pointed-at, the user must program it by
hand inside the task, including proper synchronization, to make sure that the
data is not freed or popped off the stack before it is copied. Support for this in
the language would improve the usability of the tasking model.

In the N Queens problem, we could have used a reduction operation for tasks.
In other words, we could have used a way to automatically make tasks contribute
values to a shared variable. It can be programmed explicitly using threadprivate
variables, but a reduction clause would save programming effort.

The taskgroup and taskwait constructions provide useful task synchroniza-
tion, but are cumbersome for programming some types of applications, such as a
multi-stage pipeline. A pipeline could be implemented by giving names to tasks,
and waiting for other tasks by name.

We anticipate much research in the area of improving the runtime library.
One research direction that would surely yield improvements is working on the
task scheduler, as it can significantly affect application performance. Another
interesting idea would be to find the impact of granularity on application per-
formance and develop ways, either explicitly or implicitly, to increase the gran-
ularity of the tasks (for example by aggregating them) so they could be applied
to applications with finer parallelism (e.g. the connected components problem)
or reduce the overhead in other applications.

Of course, we have not explored all possible application domains, so other
issues may remain to be found. Therefore, it is important to continue the asses-
ment of the proposal by looking at new applications and particularly at Fortran
codes, where optimizations could be affected differently by the tasking model.
Another interesting dimension to assess in the future is the point of view of
novice programmers and their learning curve with the model.

6 Conclusions

This paper had two objectives: first, test the expressiveness of the new OpenMP
tasks proposal. Second, verify that the model does not introduce hidden factors
that hamper the actual level of parallelism which can be achieved at runtime.

We have shown that the new proposal allows the programmer to express
the parallelism of a wide range of applications from very different domains (lin-
ear algebra, server applications, backtracking, etc). Furthermore, we have found
different issues that OpenMP language designers may want to consider in the
future to further improve the expressiveness of the language and simplify the
programming effort in some scenarios.

Using these applications we have seen the new proposal matches other task-
ing proposals in terms of performance and that it surpasses alternative imple-
mentations with the current 2.5 OpenMP elements. While these results are not
conclusive, as they certainly have not explored exhaustively all possibilities, they

provide a strong indication that the model can be implemented without incurring
significant overheads. We have also detected two areas where runtime improve-
ments would benefit the applications (i.e. task scheduling and granularity).

In summary, we think that while the new OpenMP task proposal can be
improved, it provides a solid basis for the development of applications containing
irregular parallelism.

Acknowledgments

The Nanos group at BSC-UPC has been supported by the Ministry of Education
of Spain under contract TIN2007-60625, and the European Commission in the
context of the SARC integrated project #27648 (FP6).

References

1. Intel Corporation. Intel(R) C++ Compiler Documentation, May 2006.
2. E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, P. Unnikr-

ishnan, and G. Zhang. A Proposal for Task Parallelism in OpenMP. In 3rd
International Workshop on OpenMP (IWOMP’07), 2007.

3. L. Hochstein et al. Parallel Programmer Productivity: A Case Study of Novice
Parallel Programmers. In SuperComputing ’05, November 2005.

4. S. Salvini. Unlocking the Power of OpenMP. Invited lecture at 5th European
Workshop on OpenMP (EWOMP ’03), September 2003.

5. J. Kurzak and J. Dongarra. Implementing Linear Algebra Routines on Multi-Core
Processors with Pipelining and a Look Ahead. LAPACK Working Note 178, Dept.
of Computer Science, University of Tennessee, September 2006.

6. R. Blikberg and T. Sørevik. Load balancing and OpenMP implementation of nested
parallelism. Parallel Computing, 31(10-12):984–998, 2005.

7. F. Massaioli, F. Castiglione, and M. Bernaschi. OpenMP parallelization of agent-
based models. Parallel Computing, 31(10-12):1066–1081, 2005.

8. S. Shah, G. Haab, P. Petersen, and J. Throop. Flexible control structures for
parallellism in OpenMP. In 1st European Workshop on OpenMP, September 1999.

9. F. G. Van Zee, P. Bientinesi, T. M. Low, and R. A. van de Geijn. Scalable Paral-
lelization of FLAME Code via the Workqueuing Model. ACM Trans. Math. Soft.,
submitted, 2006.

10. K. Asanovic et al. The Landscape of Parallel Computing Research: A View
from Berkeley. Technical Report UCB/EECS-2006-183, Electrical Engineering and
Computer Science Depts., University of California at Berkeley, December 2006.

11. Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. In PLDI ’98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and implementation,
pages 212–223, New York, NY, USA, 1998. ACM Press.

12. B. Chamberlain, J. Feo, J. Lewis, and D. Mizell. An application kernel matrix for
studying the productivity of parallel programming languages. In W3S Workshop
- 26th International Conference on Software Engineering, pages 37–41, May 2004.

13. J. Balart, A. Duran, M. Gonzàlez, X. Martorell, and E. Ayguadé a nd J. Labarta.
Nanos mercurium: a research compiler for openmp. In Proceedings of the European
Workshop on OpenMP 2004, October 2004.

