
An Ultra Low-Power Hardware Accelerator for
Automatic Speech Recognition
Reza Yazdani, Albert Segura, Jose-Maria Arnau, Antonio Gonzalez

Computer Architecture Department, Universitat Politecnica de Catalunya
{ryazdani, asegura, jarnau, antonio}@ac.upc.edu

Abstract—Automatic Speech Recognition (ASR) is becoming
increasingly ubiquitous, especially in the mobile segment. Fast
and accurate ASR comes at a high energy cost which is not
affordable for the tiny power budget of mobile devices. Hardware
acceleration can reduce power consumption of ASR systems,
while delivering high-performance.

In this paper, we present an accelerator for large-vocabulary,
speaker-independent, continuous speech recognition. It focuses on
the Viterbi search algorithm, that represents the main bottleneck
in an ASR system. The proposed design includes innovative
techniques to improve the memory subsystem, since memory is
identified as the main bottleneck for performance and power
in the design of these accelerators. We propose a prefetching
scheme tailored to the needs of an ASR system that hides main
memory latency for a large fraction of the memory accesses with
a negligible impact on area. In addition, we introduce a novel
bandwidth saving technique that removes 20% of the off-chip
memory accesses issued during the Viterbi search.

The proposed design outperforms software implementations
running on the CPU by orders of magnitude and achieves 1.7x
speedup over a highly optimized CUDA implementation running
on a high-end Geforce GTX 980 GPU, while reducing by two
orders of magnitude (287x) the energy required to convert the
speech into text.

I. INTRODUCTION

Automatic Speech Recognition (ASR) has attracted the
attention of the architectural community [1], [2], [3], [4] and
the industry [5], [6], [7], [8] in recent years. ASR is becoming
a key feature for smartphones, tablets and other energy-
constrained devices like smartwatches. ASR technology is at
the heart of popular voice-based user interfaces for mobile
devices such as Google Now, Apple Siri or Microsoft Cortana.
These systems deliver large-vocabulary, real-time, speaker-
independent, continuous speech recognition. Unfortunately,
supporting fast and accurate speech recognition comes at a
high energy cost, which in turn results in fairly short operating
time per battery charge. Performing ASR remotely in the cloud
can potentially alleviate this issue, but it comes with its own
drawbacks: it requires access to the Internet, it might increase
the latency due to the time required to transfer the speech
and it increases the energy consumption of the communication
subsystem. Given the issues with software-based solutions
running locally or in the cloud, we believe that hardware
acceleration represents a better approach to achieve high-
performance and energy-efficient speech recognition in mobile
devices.

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f E
xe

cu
tio

n
Ti

m
e

Vit CPU - DNN CPU
Vit CPU - DNN GPU

Vit GPU - DNN GPU

Viterbi Search Deep Neural Net Speedup

0
2
4
6
8
10
12
14

Sp
ee

du
p

Fig. 1: Percentage of execution time for the two components of
a speech recognition system: the Viterbi search and the Deep
Neural Net. The Viterbi search is the dominant component, as
it requires 73% and 86% of the execution time when running
on a CPU and a GPU respectively.

The most time consuming parts of an ASR pipeline can
be offloaded to a dedicated hardware accelerator in order to
bridge the energy gap, while maintaining high-performance or
even increasing it. An ASR pipeline consists of two stages:
the Deep Neural Network (DNN) and the Viterbi search.
The DNN converts the input audio signal into a sequence of
phonemes, whereas the Viterbi search converts the phonemes
into a sequence of words. Figure 1 shows the percentage of
execution time required for both stages in Kaldi [9], a state-
of-the-art speech recognition system widely used in academia
and industry. As it can be seen, the Viterbi search is the main
bottleneck as it requires 73% of the execution time when
running Kaldi on a recent CPU and 86% when running on
a modern GPU. Moreover, the two stages can be pipelined
and, in that case, the latency of the ASR system depends on
the execution time of the slowest stage, which is clearly the
Viterbi search.

In recent years there has been a lot of work on boosting
the performance of DNNs by using GPUs [10], [11], [12]
or dedicated accelerators [13], [14], achieving huge speedups
and energy savings. However, the DNN is just a small part
of an ASR system, where the Viterbi search is the dominant
component as shown in Figure 1. Unfortunately, the Viterbi
search algorithm is hard to parallelize [12], [15], [16] and,
therefore, a software implementation cannot exploit all the
parallel computing units of modern multi-core CPUs and978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

many-core GPUs. Not surprisingly, previous work reported a
modest speedup of 3.74x for the Viterbi search on a GPU [10].
Our numbers also support this claim as we obtained a speedup
of 10x for the Viterbi search on a modern high-end GPU,
which is low compared to the 26x speedup that we measured
for the DNN. Besides, these speedups come at a very high cost
in energy consumption. Therefore, we believe that a hardware
accelerator specifically tailored to the characteristics of the
Viterbi algorithm is the most promising way of achieving high-
performance energy-efficient ASR on mobile devices.

In this paper, we present a hardware accelerator for speech
recognition that focuses on the Viterbi search stage. Our
experimental results show that the accelerator achieves similar
performance to a high-end desktop GPU, while reducing
energy by two orders of magnitude. Furthermore, we analyze
the memory behavior of our accelerator and propose two
techniques to improve the memory subsystem. The first tech-
nique consists in a prefetching scheme inspired by decoupled
access-execute architectures to hide the memory latency with a
negligible cost in area. The second proposal consists in a novel
bandwidth saving technique that avoids 20% of the memory
fetches to off-chip system memory.

This paper focuses on energy-efficient, high-performance
speech recognition. Its main contributions are the following:

• We present an accelerator for the Viterbi search that
achieves 1.7x speedup over a high-end desktop GPU,
while consuming 287x less energy.

• We introduce a prefetching architecture tailored to the
characteristics of the Viterbi search algorithm that pro-
vides 1.87x speedup over the base design.

• We propose a memory bandwidth saving technique that
removes 20% of the accesses to off-chip system memory.

The remainder of this paper is organized as follows. Sec-
tion II provides the background information on speech recog-
nition systems. Section III presents our base design for speech
recognition. Section IV introduces two new techniques to
hide memory latency and save memory bandwidth. Section V
describes our evaluation methodology and Section VI shows
the performance and power results. Section VII reviews some
related work and, finally, Section VIII sums up the main
conclusions.

II. SPEECH RECOGNITION WITH WFST
Speech recognition is the process of identifying a sequence

of words from speech waveforms. An ASR system must be
able to recognize words from a large vocabulary with unknown
boundary segmentation between consecutive words. The typ-
ical pipeline of an ASR system works as follows. First, the
input audio signal is segmented in frames of 10 ms of speech.
Second, the audio samples within a frame are converted into
a vector of features using signal-processing techniques such
as Mel Frequency Cepstral Coefficients (MFCC) [17]. Third,
the acoustic model, implemented by a Deep Neural Net-
work (DNN), transforms the MFCC features into phonemes’
probabilities. Context-sensitive phonemes are the norm, tri-
phones [18] being the most common approach. A triphone

is a particular phoneme when combined with a particular
predecessor and a particular successor. Finally, the Viterbi
search converts the sequence of phonemes into a sequence
of words. The Viterbi search takes up the bulk of execution
time, as illustrated in Figure 1, and is the main focus of our
hardware accelerator presented in Section III. The complexity
of the search process is due to the huge size of the recognition
model employed to represent the characteristics of the speech.

The state-of-the-art in recognition networks for speech is
the Weighted Finite State Transducer (WFST) [19] approach.
A WFST is a Mealy finite state machine that encodes a
mapping between input and output labels associated with
weights. In the case of speech recognition, the input labels
represent the phonemes and the output labels the words. The
WFST is constructed offline during the training process by
using different knowledge sources such as context dependency
of phonemes, pronunciation and grammar. Each knowledge
source is represented by an individual WFST, and then they
are combined to obtain a single WFST encompassing the
entire speech process. For large vocabulary ASR systems,
the resulting WFST contains millions of states and arcs. For
example, the standard transducer for English language in Kaldi
contains more than 13 million states and more than 34 million
arcs.

Figure 2a shows a simple WFST for a very small vocabulary
with two words. The WFST consists of a set of states and a
set of arcs. Each arc has a source state, a destination state
and three attributes: weight (or likelihood), phoneme (or input
label) and word (or output label). On the other hand, Figure
2b shows the acoustic likelihoods generated by the DNN for an
audio signal with three frames of speech. For instance, frame
one has 90% probability of being phoneme l. Finally, Figure 2c
shows the trace of states expanded by the Viterbi search when
using the WFST of Figure 2a and the acoustic likelihoods
of Figure 2b. The search starts at state 0, the initial state of
the WFST. Next, the Viterbi search traverses all possible arcs
departing from state 0, considering the acoustic likelihoods
of the first frame of speech to create new active states. This
process is repeated iteratively for every frame of speech,
expanding new states by using the information of the states
created in the previous frame and the acoustic likelihoods of
the current frame. Once all the frames are processed, the active
state with maximum likelihood in the last frame is selected,
and the best path is recovered by using backtracking.

More generally, the Viterbi search employs a WFST to
find the sequence of output labels, or words, with maximum
likelihood for the sequence of input labels, or phonemes,
whose associated probabilities are generated by a DNN. The
word sequence with maximum likelihood is computed using
a dynamic programming recurrence. The likelihood of the
traversal process being in state j at frame f , ψf (sj), is com-
puted from the likelihood in the preceding states as follows:

ψf (sj) = max
i
{ψf−1(si) · wij · b(Of ;mk)} (1)

where wij is the weight of the arc from state i to state j, and
b(Of ;mk) is the probability that the observation vector Of

0

10.6/l/- 20.8/ /-ə 30.8/u/low

4 50.4/l/-
0.8/e/-

6
0.8/s/less

0.2/ /-ə0.2/l/-

0.2/l/- 0.2/e/-

(a) Example of WFST

frame l ə u e s
1

2

3

0.9 0.0250.025 0.025 0.025

0.7 0.250.025 0.012 0.012

0.90.025 0.025 0.0250.025

(b) Acoustic likelihoods

0 1

4

1.0
f=0 f=1 f=2 f=3

0.54

0.36

1

2

4

5

0.0027

0.3

0.0018

0.07

2

3

5

6

0.0015

0.0003

0.0014

0.21

pruning!

pruning!

low

less

(c) Viterbi search trace

Fig. 2: Figure (a) shows a simple WFST that is able to recognize two words: low and less. For each arc the figure shows
the weight, or transition probability, the phoneme that corresponds to the transition (input label) and the corresponding word
(output label). Dash symbol indicates that there is no word associated to the transition. Figure (b) shows the acoustic likelihoods
generated by the DNN for an audio with three frames. Figure (c) shows a trace of the Viterbi algorithm when using the WFST
in (a) with the acoustic likelihoods shown in (b), the figure also shows the likelihood of reaching each state. The path with
maximum likelihood corresponds to the word low.

corresponds to the phoneme mk, i. e. the acoustic likelihood
computed by the DNN. In the example shown in Figure 2,
the likelihood of being in state 1 at frame 1 is: ψ0(s0) ·w01 ·
b(O1; l) = 1.0 · 0.6 · 0.9 = 0.54. Note that state 1 has only
one predecessor in the previous frame. In case of multiple
input arcs, all possible transitions from active states in the
previous frame are considered to compute the likelihood of
the new active state according to Equation 1. Therefore, the
Viterbi search performs a reduction to compute the path with
maximum likelihood to reach the state j at frame f . In addition
to this likelihood, the algorithm also saves a pointer to the
best predecessor for each active state, that will be used during
backtracking to restore the best path.

For real WFSTs, it is unfeasible to expand all possible
paths due to the huge search space. In practice, ASR systems
employ pruning to discard the paths that are rather unlikely.
In standard beam pruning, only active states that fall within a
defined range, a.k.a. beam width, of the frame’s best likelihood
are expanded. In the example of Figure 2c, we set the beam
width to 0.25. With this beam, the threshold for frame 2 is
0.05: the result of subtracting the beam from the frame’s best
score (0.3). Active states 1 and 4 are pruned away as their
likelihoods are smaller than the beam. The search algorithm
combined with the pruning is commonly referred as Viterbi
beam search [20].

On the other hand, representing likelihoods as floating point
numbers between 0 and 1 might cause arithmetic underflow.
To prevent this issue, ASR systems use log-space probabilities.
Another benefit of working in log-space is that floating point
multiplications are replaced by additions.

Regarding the arcs of the recognition network, real WFSTs
typically include some arcs with no input label, a.k.a. epsilon
arcs [10]. Epsilon arcs are not associated with any phoneme
and they can be traversed during the search without consuming
a new frame of speech. One of the reasons to include epsilon
arcs is to model cross-word transitions. Epsilon arcs are less
frequent than the arcs with input label, a.k.a. non-epsilon arcs.
In Kaldi’s WFST only 11.5% of the arcs are epsilon.

Note that there is a potential ambiguity in the use of the term
state, as it might refer to the static WFST states (see Figure 2a)

or the dynamic Viterbi trace (see Figure 2c). To clarify the
terminology, in this paper we use state to refer to a static
state of the WFST, whereas we use token to refer to an active
state dynamically created during the Viterbi search. A token
is associated with a static WFST state, but it also includes the
likelihood of the best path to reach the state at frame f and
the pointer to the best predecessor for backtracking.

The WFST approach has two major advantages over alterna-
tive representations of the speech model. First, it provides flex-
ibility in adopting different languages, grammars, phonemes,
etc. Since all these knowledge sources are compiled to one
WFST, the algorithm only needs to search over the resulting
WFST without consideration of the knowledge sources. This
characteristic is especially beneficial for a hardware implemen-
tation as the same ASIC can be used to recognize words in dif-
ferent languages by using different types of models: language
models (e.g., bigrams or trigrams), context dependency (e.g.,
monophones or triphones), etc. Therefore, supporting speech
recognition for a different language or adopting more accurate
language models only requires changes to the parameters of
the WFST, but not to the software or hardware implementation
of the Viterbi search. Second, the search process with the
WFST is faster than using alternative representations of the
speech, as it explores fewer states [21].

III. HARDWARE ACCELERATED SPEECH RECOGNITION

In this section, we describe a high-performance and low-
power accelerator for speech recognition. The accelerator
focuses on the Viterbi beam search since it represents the vast
majority of the compute time in all the analyzed platforms as
shown in Figure 1. On the other hand, the neural-network used
to produce acoustic likelihoods runs on GPU and in parallel
with the accelerator. Figure 3 illustrates the architecture of the
accelerator, which consists of a pipeline with five stages. In
addition to a number of functional blocks, it includes several
on-chip memories to speed-up the access to different types
of data required by the search process. More specifically, the
accelerator includes three caches (State, Arc and Token), two
hash tables to store the tokens for the current and next frames

Hash 1
(current
frame)

Hash 2
(next

frame)

State Issuer

Token
Issuer

Arc Issuer
Acoustic-
likelihood

Issuer

Likelihood
Evaluation

Viterbi
Accelerator

States

Arcs

Tokens

Overflow
Buffer

Main
Memory

M
e
m
o
r
y

C
o
n
t
r
o
ll
e
r

Token
Cache

State Cache Arc Cache

Acoustic
Likelihood

Buffer

Fig. 3: Architecture of the accelerator for speech recognition.

of the speech, and a scratchpad memory to store the acoustic
likelihoods computed by the DNN.

The accelerator cannot store the WFST on-chip due to
its huge size. A typical WFST such as the one used in
the experiments of this work [9] has a large vocabulary of
125k words and it contains more than 13M states and more
than 34M arcs. The total size of the WFST is 618 MBytes.
Regarding the representation of the WFST, we use the memory
layout proposed in [2]. In this layout, states and arcs are
stored separately in two different arrays. For each state, three
attributes are stored in main memory: index of the first arc
(32 bits), number of non-epsilon arcs (16 bits) and number
of epsilon arcs (16 bits) packed in a 64-bit structure. All
the outgoing arcs for a given state are stored in consecutive
memory locations namely array of arcs; the non-epsilon arcs
are stored first, followed by the epsilon arcs. For each arc,
four attributes are stored packed in 128 bits: index of the arc’s
destination state, transition weight, input label (phoneme id)
and output label (word id), each represented as a 32-bit value.
The State and Arc caches speed-up the access to the array of
states and arcs respectively.

On the other hand, the accelerator also keeps track of the
tokens generated dynamically throughout the search. Token’s
data is split into two parts, depending on whether the data has
to be kept until the end of the search or it is only required
for a given frame of speech: a) the backpointer to the best
predecessor is required for the backtracking step to restore the
best path when the search finishes, so these data are stored
in main memory and cached in the Token cache; b) on the
other hand, the state index and the likelihood of reaching the
token are stored in the hash table and are discarded when the
processing of the current frame finishes.

Due to the pruning described in Section II, only a very small
subset of the states are active at any given frame of speech.
The accelerator employs two hash tables to keep track of the
active states, or tokens, created dynamically for the current and
next frames respectively. By using a hash table, the accelerator
is able to quickly find out whether a WFST state has already
been visited in a frame of speech.

0

5

10

15

20

25

30

35

40

45

256K 512K 1M 2M 4M

M
is

s
R

at
io

 (
%

)

Cache Size

State Cache

Arc Cache

Token Cache

Fig. 4: Miss ratio vs capacity for the different caches in the
accelerator.

A. Overall ASR System

Our ASR system is based on the hybrid approach that com-
bines a DNN for acoustic scoring with the Viterbi beam search,
which is the state-of-the-art scheme in speech recognition.
DNN evaluation is easy to parallelize and, hence, it achieves
high performance and energy-efficiency on a GPU. On the
other hand, the Viterbi search is the main bottleneck and it
is hard to parallelize, so we propose a dedicated hardware
accelerator specifically tailored to the needs of Viterbi beam
search algorithm. Therefore, our overall ASR system combines
the GPU, for DNN evaluation, with an accelerator for Viterbi
search.

In our ASR system, the input frames of speech are grouped
in batches. The accelerator and the GPU work in parallel
processing different batches in a pipelined manner: the GPU
computes the DNN for the current batch while the accelerator
performs Viterbi search for the previous batch. Note that
the results computed by the GPU, i. e. the acoustic scores
for one batch, have to be transferred from GPU memory to
accelerator’s memory. In order to hide the latency required
for transferring acoustic scores, a double-buffered memory
is included in the accelerator, named Acoustic Likelihood
Buffer in Figure 3. This memory stores the acoustic scores
for the current and the next frame of speech. The accelerator
decodes the current frame of speech while the acoustic scores
for the next frame are fetched from memory, overlapping
computations with memory accesses.

B. Accelerator Pipeline

The Viterbi accelerator, illustrated in Figure 3, implements
the Viterbi beam search algorithm described in Section II. We
use the example shown in Figure 2 to illustrate the behavior
of the accelerator. More specifically, we describe how the
hardware expands the arcs of frame 2 to generate the new
tokens in frame 3. Initially, the hash table for the current frame
(Hash 1) stores the information for tokens 1, 2, 4 and 5. The
State Issuer fetches these tokens from the hash table, including
the index of the associated WFST state and the likelihood of
reaching the token. The State Issuer then performs the pruning

using a threshold of 0.05: the likelihood of the best token (0.3)
minus the beam (0.25). Tokens 1 and 4 are pruned away as
their likelihoods are smaller than the threshold, whereas tokens
2 and 5 are considered for arc expansion. Next, the State Issuer
generates memory requests to fetch the information of WFST
states 2 and 5 from main memory, using the State Cache to
speed up this process. The state information includes the index
of the first arc and the number of arcs. Once the State Cache
serves these data, they are forwarded to the Arc Issuer.

The Arc Issuer generates memory requests to fetch the
outgoing arcs for states 2 and 5, using the Arc Cache to speed
up the arc fetching. The arc information includes the index of
the destination state, weight, phoneme index and word index.
For example, the second arc of state 2 has destination state
3, weight equal to 0.8 and it is associated with phoneme u
and word low. Once the Arc Cache provides the data of an
arc, it is forwarded to the next pipeline stage. The Acoustic
Likelihood Issuer employs the phoneme’s index to fetch the
corresponding acoustic score computed by the DNN. A local
on-chip memory, the Acoustic Likelihood Buffer, is used to
store all the acoustic scores for the current frame of speech.

In the next pipeline stage, the Likelihood Evaluation, all
the data required to compute the likelihood of the new token
according to Equation 1 is already available: the likelihood
of reaching the source token, the weight of the arc and the
acoustic score from the DNN. The Likelihood Evaluation
performs the summation of these three values for every arc to
compute the likelihoods of reaching the new tokens in the next
frame. Note that additions are used instead of multiplications
as the accelerator works in log-space. In the example of
Figure 2c, the second arc of token 2 generates a new token in
the next frame, token 3, with likelihood 0.21: the likelihood
of the source token is 0.3, the weight of the arc is 0.8 (see
Figure 2a) and the acoustic score for phoneme u in frame 3
is 0.9 (see Figure 2b).

Finally, the Token Issuer stores the information for the new
tokens in the hash table for the next frame (Hash 2). In this
example, it saves the new tokens for states 2, 3, 5 and 6
together with their associated likelihoods in the hash table.
In addition, the index of the source token and the word index
are stored in main memory, using the Token Cache, as this
information is required for backtracking in order to recover
the best path. Note that different arcs might have the same
destination state. In that case, the Token Issuer only saves the
best path for reaching the destination state, i. e. the path with
maximum likelihood among all the different ingoing arcs.

The hash table is accessed using the state index. Each entry
in the hash table stores the likelihood of the token and the
address where the backpointer for the token is stored in main
memory. In addition, each entry contains a pointer to the next
active entry, so all the tokens are in a single linked list that
can be traversed by the State Issuer in the next frame. The
hash table includes a backup buffer to handle collisions (states
whose hash function maps them to the same entry). In case of
a collision, the new state index is stored in a backup buffer,
and a pointer to that location is saved in the original entry of

the hash. Each new collision is stored in the backup buffer
and linked to the last collision of the same entry, all collisions
forming a single linked list.

On the other hand, in case of an overflow in a hash table,
the accelerator employs a buffer in main memory, labeled as
Overflow Buffer in Figure 3, as an extension of the backup
buffer. Overflows significantly increase the latency to access
the hash table, but we found that they are extremely rare for
common hash table sizes.

The Acoustic Likelihood Buffer contains the likelihoods
computed by the DNN. In our system, the DNN is evaluated
in the GPU and the result is transferred to the aforementioned
buffer in the accelerator. The buffer contains storage for two
frames of speech. The accelerator expands the tokens for the
current frame while it fetches the acoustic scores for the next
frame, overlapping computations with memory accesses.

The result generated by the accelerator is the dynamic
trace of tokens in main memory (see Figure 2c), together
with the address of the best token in the last frame. The
backtracking is done on the CPU, following backpointers to
get the sequence of words in the best path. The execution
time of the backtracking is negligible compared to the Viterbi
search so it does not require hardware acceleration.

C. Analysis of Caches and Hash Tables

Misses in the caches and collisions in the hash tables are the
only sources of pipeline stalls and, therefore, the parameters
for those components are critical for the performance of
the overall accelerator. In this section, we evaluate different
configurations of the accelerator to find appropriate values for
the capacity of the State, Arc and Token caches and the hash
tables.

Figure 4 shows the miss ratios of the caches for different
capacities. As it can be seen, even large capacities of 1-2
MBytes exhibit significant miss ratios. These large miss ratios
are due to the huge size of the datasets, mainly the arcs and
states in the WFST, and the poor spatial and temporal locality
that the memory accesses to those datasets exhibit. Only a
very small subset of the total arcs and states are accessed on
a frame of speech, and this subset is sparsely distributed in
the memory. The access to the array of tokens exhibits better
spatial locality, as most of the tokens are added at the end
of the array at consecutive memory locations. For this reason,
the Token cache exhibits lower miss ratios than the other two
caches for small capacities of 256KB-512KB.

Large cache sizes can significantly reduce miss ratio, but
they come at a significant cost in area and power. Furthermore,
they increase the latency for accessing the cache, which in turn
increases total execution time. For our baseline configuration,
we have selected 512 KB, 1 MB and 512 KB as the sizes
for the State, Arc and Token caches respectively. Although
larger values provide smaller miss ratios, we propose to use
instead other more cost-effective techniques for improving the
memory subsystem, described in Section IV.

Regarding the hash tables, Figure 5 shows the average
number of cycles per request versus the number of entries

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1

1.1

1.2

1.3

1.4

1.5

1.6

8K 16K 32K 64K

Sp
ee

d
u

p

A
vg

 C
yc

le
s

p
er

 r
eq

u
es

t

Hash Entries

Avg Cycles per Request

Speedup

Fig. 5: Average cycles per request to the hash table and
speedup vs number of entries.

in the table. If there is no collision, requests take just one
cycle, but in case of a collision, the hardware has to locate the
state index by traversing a single linked list of entries, which
may take multiple cycles (many more if it has to access the
Overflow Buffer in main memory). For 32K-64K entries the
number of cycles per request is close to one. Furthermore, the
additional increase in performance from 32K to 64K is very
small as it can be seen in the speedup reported in Figure 5.
Therefore, we use 32K entries for our baseline configuration
which requires a total storage of 768 KBytes for each hash
table, similar to the capacities employed for the caches of the
accelerator.

IV. IMPROVED MEMORY HIERARCHY

In this section, we perform an analysis of the bottlenecks
in the hardware accelerator for speech recognition presented
in Section III, and propose architectural extensions to alleviate
those bottlenecks. There are only two sources of pipeline stalls
in the accelerator: misses in the caches and collisions in the
hash tables. In case of a miss in the State, Arc or Token cache,
the ASIC has to wait for main memory to serve the data,
potentially introducing multiple stalls in the pipeline. On the
other hand, resolving a collision in the hash table requires
multiple cycles and introduces pipeline stalls, as subsequent
arcs cannot access the hash until the collision is solved.

The results obtained by using our cycle-accurate simulator
show that main memory latency has a much bigger impact
on performance than the collisions in the hash tables. The
performance of the accelerator improves by 2.11x when using
perfect caches in our simulator, whereas an ideal hash with
no collisions only improves performance by 2.8% over the
baseline accelerator with the parameters shown in Table I.
Therefore, we focus our efforts on hiding the memory latency
in an energy-efficient manner. In Section IV-A we introduce
an area-effective latency-tolerance technique that is inspired
by decoupled access-execute architectures.

On the other hand, off-chip DRAM accesses are known
to be particularly costly in terms of energy [13]. To further
improve the energy-efficiency of our accelerator, we present

Arc Cache

Acoustic
Likelihood

Issuer

Tag
Array

Arc
Address

Dynamic Arc Data

Cache
Location

Request
FIFO

Miss
Address

Memory
Controller

Reorder
Buffer

Cache
Block

Data
Array

Cache
Location

Dynamic Arc Data

Arc FIFO
Arc

Issuer

Cache
Block

Static Arc
Data

Memory
Request

Fig. 6: Prefetching architecture for the Arc cache.

a novel technique for saving memory bandwidth in Sec-
tion IV-B. This technique is able to remove a significant
percentage of the memory requests for fetching states from
the WFST.

A. Hiding Memory Latency

Cache misses are the main source of stalls in the pipeline
of the design and in consequence, main memory latency has a
significant impact on the performance of the accelerator for
speech recognition presented in Section III. Regarding the
importance of each individual cache, the results obtained in
our simulator show that using a perfect Token cache provides
a minor speedup of 1.02x. A perfect State cache improves
performance by 1.09x. On the other hand, the Arc cache
exhibits the biggest impact on performance, as removing all
the misses in this cache would provide 1.95x speedup.

The impact of the Arc cache on the performance of the
overall accelerator is due to two main reasons. First, the
memory footprint for the arcs dataset is quite large: the WFST
has more than 34M arcs, whereas the number of states is
around 13M. So multiple arcs are fetched for every state when
traversing the WFST during the Viterbi search. Second, arc
fetching exhibits poor spatial and temporal locality. Due to
the pruning, only a small and unpredictable subset of the
arcs are active on a given frame of speech. We observed
that only around 25k of the arcs are accessed on average per
frame, which represents 0.07% of the total arcs in the WFST.
Hence, the accelerator has to fetch a different and sparsely
distributed subset of the arcs on a frame basis, which results
in large miss ratio for the Arc cache (see Figure 4). Therefore,
efficiently fetching arcs from memory is a major concern for
the accelerator.

The simplest approach to tolerate memory latency is to
increase the size of the Arc cache, or to include a bigger
second level cache. However, this approach causes a sig-
nificant increase in area, power and latency to access the
cache. Another solution to hide memory latency is hardware
prefetching [22]. Nonetheless, we found that the miss address
stream during the Viterbi search is highly unpredictable due to
the pruning and, hence, conventional hardware prefetchers are

0 2 4 6 8 10 12 14
Number of Arcs

0

20

40

60

80

100
Cu

m
ul

at
iv

e
Pe

rc
en

ta
ge

 o
f S

ta
te

s

Fig. 7: Cumulative percentage of states accesses dynamically
vs the number of arcs. Although the maximum number of arcs
per state is 770, 97% of the states fetched from memory have
15 or less arcs.

ineffective. We implemented and evaluated different state-of-
the-art hardware prefetchers [22], [23], and our results show
that these schemes produce slowdowns and increase energy
due to the useless prefetches that they generate.

Our proposed scheme to hide memory latency is based on
the observation that arcs prefetching can be based on computed
rather than predicted addresses, following a scheme similar
to the decoupled access-execute architecures [24]. After the
pruning step, the addresses of all the arcs are deterministic.
Once a state passes the pruning, the system can compute the
addresses for all its outgoing arcs and prefetch their data from
memory long before they are required, thus allowing cache
miss latency to overlap with useful computations without
causing stalls. Note that the addresses of the arcs that are
required in a given frame only depend on the outcome of the
pruning. Once the pruning is done, subsequent arcs can be
prefetched while previously fetched arcs are being processed
in the next pipeline stages.

Figure 6 shows our prefetching architecture for the Arc
cache, which is inspired by the design of texture caches for
GPUs [25]. Texture fetching exhibits similar characteristics
to the arcs fetching, as all the texture addresses can also be
computed much in advance from the time the data is required.

The prefetching architecture processes arcs as follows. First,
the Arc Issuer computes the address of the arc and sends a
request to the Arc cache. The arc’s address is looked up in
the cache tags, and in case of a miss the tags are updated
immediately and the arc’s address is forwarded to the Request
FIFO. The cache location associated with the arc is forwarded
to the Arc FIFO, where it is stored with all the remaining data
required to process the arc, such as the source token likelihood.
On every cycle, a new request for a missing cache block is
sent from the Request FIFO to the Memory Controller, and
a new entry is reserved in the Reorder Buffer to store the
returning memory block. The Reorder Buffer prevents younger
cache blocks from evicting older yet-to-be-used cache blocks,
which could happen in the presence of an out-of-order memory

States

Arcs

S
1
 1 arc S

2
 2 arcs S

3
 3 arcs S

4
 4 arcs Rest of states

S
1 2 * S

2
3 * S

3
4 * S

4

state_idx

< S
1

< S
1
 + S

2

< S
1
 + S

2
+ S

3

< S
1
 + S

2
+ S

3
+ S

4

>= S
1
 + S

2
+ S

3
+ S

4

First Arc: state_idx

First Arc: 2 * state_idx - S
1

First Arc: 3 * state_idx - 2S
1
 - S

2

First Arc: 4 * state_idx - 3S
1
 - 2S

2
- S

3

Fetch state from memory

Fig. 8: Changes to the WFST layout. In this example, we can
directly compute arc index from state index for states with 4
or less arcs.

system if the cache blocks are written immediately in the Data
Array.

When an arc reaches the top of the Arc FIFO, it can
access the Data array only if its corresponding cache block
is available. Arcs that hit in the cache proceed immediately,
but arcs that generated a miss must wait for its cache block to
return from the memory into the Reorder Buffer. New cache
blocks are committed to the cache only when its corresponding
arc reaches the top of the Arc FIFO. At this point, the arcs that
are removed from the head of the FIFO read their associated
data from the cache and proceed to the next pipeline stage in
the accelerator.

The proposed prefetching architecture solves the two main
issues with the hardware prefetchers: accuracy and timeliness.
The architecture achieves high accuracy because the prefetch-
ing is based on the computed rather than predicted addresses.
Timeliness is achieved as cache blocks are not prefetched too
early or too late. The Reorder Buffer guarantees that data is
not written in the cache too early. Furthermore, if the number
of entries in the Arc FIFO is big enough the data is prefetched
with enough anticipation to hide memory latency.

Our experimental results provided in Section VI show that
this prefetching architecture achieves performance very close
to a perfect cache, with a negligible increase of 0.34% in the
area of the Arc cache and 0.05% in the area of the overall
accelerator.

B. Reducing Memory Bandwidth

The accelerator presented in Section III consumes memory
bandwidth to access states, arcs and tokens stored in off-chip
system memory. The only purpose of the state fetches is to
locate the outgoing arcs for a given state, since the information
required for the decoding process is the arc’s data. The WFST
includes an array of states that stores the index of the first
arc and the number of arcs for each state. Accessing the arcs

TABLE I: Hardware parameters for the accelerator.

Technology 28 nm
Frequency 600 MHz

State Cache 512 KB, 4-way, 64 bytes/line
Arc Cache 1 MB, 4-way, 64 bytes/line

Token Cache 512 kB, 2-way, 64 bytes/line
Acoustic Likelihood Buffer 64 KB

Hash Table 768 KB, 32K entries
Memory Controller 32 in-flight requests

State Issuer 8 in-flight states
Arc Issuer 8 in-flight arcs

Token Issuer 32 in-flight tokens
Acoustic Likelihood Issuer 1 in-flight arc
Likelihood Evaluation Unit 4 fp adders, 2 fp comparators

of a given state requires a previous memory read to fetch the
state’s data.

Note that this extra level of indirection is required since
states in the WFST have different number of arcs ranging
from 1 to 770. If all the states would have the same number
of arcs, arcs indices could be directly computed from state
index. Despite the wide range in the number of arcs, we have
observed that most of the states accessed dynamically have
a small number of outgoing arcs as illustrated in Figure 7.
Based on this observation, we propose a new scheme that is
based on sorting the states in the WFST by their number of
arcs, which allows to directly compute arc addresses from the
state index for most of the states.

Figure 8 shows the new memory layout for the WFST. We
move the states with a number of arcs smaller than or equal
to N to the beginning of the array, and we sort those states by
their number of arcs. In this way, we can directly compute the
arc addresses for states with N or less arcs. In the example of
Figure 8, we use 4 as the value of N.

To implement this optimization, in addition to changing
the WFST offline, modifications to the hardware of the State
Issuer are required to exploit the new memory layout at
runtime. First, N parallel comparators are included as shown
in Figure 8, together with N 32-bit registers to store the values
of S1, S1 + S2... that are used as input for the comparisons
with the state index. Second, a table with N entries is added
to store the offset applied to convert the state index into its
corresponding arc index in case the state has N or less arcs. In
our example, a state with 2 arcs has an offset of −S1, which
is the value stored in the second entry of the table.

The outcome of the comparators indicates whether the arc
index can be directly computed or, on the contrary, a memory
fetch is required. In the first case, the result of the comparators
also indicates the number of arcs for the state and, hence, it
can be used to select the corresponding entry in the table to
fetch the offset that will be used to compute the arc index.
In addition to this offset, the translation from state index to
arc index also requires a multiplication. The factor for this
multiplication is equal to the number of arcs for the state,
which is obtained from the outcome of the comparators. The
multiplication and addition to convert state index into arc index
can be performed in the Address Generation Unit already
included in the State Issuer, so no additional hardware is

TABLE II: CPU parameters.

CPU Intel Core i7 6700K
Number of cores 4

Technology 14 nm
Frequency 4.2 GHz

L1, L2, L3 64 KB, 256 KB per core, 8 MB

TABLE III: GPU parameters.

GPU NVIDIA GeForce GTX 980
Streaming multiprocessors 16 (2048 threads/multiprocessor)

Technology 28 nm
Frequency 1.28 GHz

L1, L2 caches 48 KB, 2 MB

required for those computations.
For our experiments we use 16 as the value of N. With

this value we can directly access the arcs for more than 95%
of the static states in the WFST and more than 97% of the
dynamic states visited at runtime. This requires 16 parallel
comparators, 16 32-bit registers to store the values of S1, S1+
S2... and a table with 16 32-bit entries to store the offsets.
Our experimental results show that this extra hardware only
increases the area of the State cache by 0.36% and the area
of the overall accelerator by 0.02%, while it reduces memory
bandwidth usage by 20%.

V. EVALUATION METHODOLOGY

We have developed a cycle-accurate simulator that models
the architecture of the accelerator presented in Section III.
Table I shows the parameters employed for the experiments
in the accelerator. We modified the simulator to implement
the prefetching scheme described in Section IV-A. We use 64
entries for Arc FIFO, Request FIFO and Reorder Buffer in
order to hide most of the memory latency. Furthermore, we
have implemented the bandwidth saving technique proposed
in Section IV-B. We use 16 parallel comparators and a table
of offsets with 16 entries in order to directly compute the arc
indices for the states with 16 or less arcs.

In order to estimate area and energy consumption, we have
implemented the different pipeline components of the accel-
erator in Verilog and synthesized them using the Synopsys
Design Compiler with a commercial 28 nm cell library. On
the other hand, we use CACTI to estimate the power and area
of the three caches included in the accelerator. We employ the
version of CACTI provided in McPAT [26], a.k.a. enhanced
CACTI [27] which includes models for 28 nm.

We use the delay estimated by CACTI and the delay of
the critical path reported by Design Compiler to set the target
frequency so that the various hardware structures can operate
in one cycle (600 MHz). In addition, we model an off-chip
4GB DRAM using CACTI’s DRAM model to estimate the
access time to main memory. We obtained a memory latency
of 50 cycles (83 ns) for our accelerator.

Regarding our datasets, we use the WFST for English
language provided in the Kaldi toolset [9], which is created
from a vocabulary of 125k words, and the audio files from
Librispeech corpus [28].

0

10

20

30

40

50
De

co
di

ng
 ti

m
e

pe
r 1

s
of

 s
pe

ec
h

(m
s)

CPU GPU ASIC
ASIC+State

ASIC+Arc

ASIC+State&Arc

209

Fig. 9: Decoding time, i. e. time to execute the Viterbi search,
per second of speech. Decoding time is smaller than one
second for all the configurations, so all the systems achieve
real-time speech recognition.

A. CPU Implementation

We use the software implementation of the Viterbi beam
search included in Kaldi, a state-of-the-art ASR system. We
measure the performance of the software implementation on a
real CPU with the parameters shown in Table II. We employ
Intel RAPL library [29] to measure energy consumption. We
use GCC 4.8.4 to compile the software using -O3 optimization
flag.

B. GPU Implementation

We have implemented the state-of-the-art GPU version of
the Viterbi search presented in [10]. Furthermore, we have
incorporated all the optimizations described in [30] to improve
memory coalescing, reduce the cost of the synchronizations
and reduce the contention in main memory by exploiting
GPU’s shared memory. We use the nvcc compiler included
in CUDA toolkit version 7.5 with -O3 optimization flag. We
run our CUDA implementation on a high-end GPU with the
parameters shown in Table III and use the NVIDIA Visual
Profiler [31] to measure performance and power.

VI. EXPERIMENTAL RESULTS

In this section, we provide details on the performance and
energy consumption of the CPU, the GPU and the different
versions of the accelerator. Figure 9 shows the decoding
time per one second of speech, a common metric used in
speech recognition that indicates how much time it takes
for the system to convert the speech waveform into words
per each second of speech. We report this metric for six
different configurations. CPU corresponds to the software im-
plementation running on the CPU described in Table II. GPU
refers to the CUDA version running on the GPU presented in
Table III. ASIC is our accelerator described in Section III with
parameters shown in Table I. ASIC+State corresponds to the
bandwidth saving technique for the State Issuer presented in
Section IV-B. ASIC+Arc includes the prefetching architecture

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Sp
ee

du
p

CPU GPU ASIC
ASIC+State

ASIC+Arc

ASIC+State&Arc

Fig. 10: Speedups achieved by the different versions of the
accelerator. The baseline is the GPU.

for the Arc cache presented in Section IV-A. Finally, the con-
figuration labeled as ASIC+State&Arc includes our techniques
for improving both the State Issuer and the Arc cache.

As it can be seen in Figure 9, all the systems achieve
real-time speech recognition, as the processing time per one
second of speech is significantly smaller than one second.
Both the GPU and the ASIC provide important reductions in
execution time with respect to the CPU. The GPU improves
performance by processing multiple arcs in parallel. The
ASIC processes arcs sequentially, but it includes hardware
specifically designed to accelerate the search process, avoiding
the overheads of software implementations.

Figure 10 shows the speedups with respect to the GPU
for the same configurations. The initial design of the ASIC
achieves 88% of the performance of the GPU. The ASIC+State
achieves 90% of the GPU performance. This configuration
includes a bandwidth saving techinque that is very effective
for removing off-chip memory accesses as reported later in this
section, but it has a minor impact on performance (its main
benefit is power reduction as we will see later). Since our
accelerator processes arcs sequentially, performance is mainly
affected by memory latency and not memory bandwidth.
On the other hand, the configurations using the prefetching
architecture for the Arc cache achieve significant speedups,
outperforming the GPU. We obtain 1.64x and 1.7x speedup
for the ASIC+Arc and ASIC+State&Arc configurations re-
spectively with respect to the GPU (about 2x with respect
to the ASIC without these optimizations). The performance
benefits come from removing the pipeline stalls due to misses
in the Arc cache, as the data for the arcs is prefetched from
memory long before they are required to hide memory latency.
The prefetching architecture is a highly effective mechanism
to tolerate memory latency, since it achieves 97% of the
performance of a perfect cache according to our simulations.

Our accelerator for speech recognition provides a huge
reduction in energy consumption as illustrated in Figure 11.
The numbers include both static and dynamic energy. The
base ASIC configuration reduces energy consumption by 171x
with respect to the GPU, whereas the optimized version

0

50

100

150

200

250

300
En

er
gy

 R
ed

uc
tio

n
vs

 G
PU

CPU GPU ASIC
ASIC+State

ASIC+Arc

ASIC+State&Arc
0.2 1.0

Fig. 11: Energy reduction vs the GPU, for different versions
of the accelerator.

using the proposed improvements for the memory subsystem
(ASIC+Arc&State) reduces energy by 287x. The reduction
in energy comes from two sources. First, the accelerator
includes dedicated hardware specifically designed for speech
recognition and, hence, it achieves higher energy-efficiency for
that task than general purpose processors and GPUs. Second,
the speedups achieved by using the prefetching architecture
provide a reduction in static energy.

On the other hand, Figure 12 shows the average power
dissipation for the different systems, including both static and
dynamic power. The CPU and the GPU dissipate 32.2 W
and 76.4 W respectively when running the speech recognition
software. Our accelerator provides a huge reduction in power
with respect to the general purpose processors and GPUs,
as its power dissipation is between 389 mW and 462 mW
depending on the configuration. The prefetching architecture
for the Arc cache increases power dissipation due to the
significant reduction in execution time that it provides, as
shown in Figure 10. With respect to the initial ASIC, the
configurations ASIC+Arc and ASIC+State&Arc achieve 1.87x
and 1.94x speedup respectively. The hardware required to
implement these improvements to the memory subsystem
dissipates a very small percentage of total power. The Arc
FIFO, the Request FIFO and the Reorder Buffer required for
the prefetching architecture dissipate 4.83 mW, only 1.07% of
the power of the overall accelerator. On the other hand, the
extra hardware required for the State Issuer (comparators and
table of offsets) dissipates 0.15 mW, 0.03% of the total power.

The Viterbi search represents the main bottleneck by far
in state-of-the-art ASR systems and, therefore, our research
focuses on this stage. Nevertheless, we have also evaluated
the performance of the entire ASR pipeline, including the
DNN evaluation and the Viterbi search. More specifically, we
compare the performance of a system that runs both stages
on the GPU with our ASR system that combines the GPU,
for DNN evaluation, with our accelerator for Viterbi beam
search. Our results indicate that our system combining GPU
with Viterbi accelerator achieves 1.87x speedup over a GPU-
only system. The improvement in performance comes from

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Po
w

er
 (W

)

CPU GPU ASIC
ASIC+State

ASIC+Arc

ASIC+State&Arc

32.2 76.4

Fig. 12: Power dissipation for the CPU, GPU and different
versions of the accelerator.

two sources. First, the accelerator achieves 1.7x speedup over
the GPU for the Viterbi search as shown in Figure 10. Second,
our ASR system is able to run the DNN and the Viterbi search
in parallel by using the GPU and the accelerator, whereas the
GPU-only system has to execute these two stages sequentially.

The memory bandwidth saving technique presented in Sec-
tion IV-B avoids 20% of the accesses to off-chip system
memory as illustrated in Figure 13. The baseline configuration
for this graph is the initial ASIC design. The figure also
shows the traffic breakdown for the different types of data
stored in main memory: states, arcs, tokens and the overflow
buffer. Our technique targets the memory accesses for fetching
states, which represent 23% of the total traffic to off-chip
memory. As it can be seen in the figure, our technique
removes most of the off-chip memory fetches for accessing the
states. The additional hardware included in the State Issuer is
extremely effective to directly compute arc indices from state
indices for the states with 16 or less arcs, without issuing
memory requests to read the arc indices from main memory
for those states. Note that in Figure 13 we do not include the
configurations that employ the prefetching architecture, as this
technique does not affect the memory traffic. Our prefetcher
does not genereate useless prefetch requests as it is based on
computed addresses.

To sum up the energy-performance analysis, Figure 14 plots
energy vs execution time per one second of speech. As it
can be seen, the CPU exhibits the highest execution time and
energy consumption. The GPU improves performance in one
order of magnitude (9.8x speedup) with respect to the CPU,
while reducing energy by 4.2x. The different versions of the
accelerator achieve performance comparable or higher to the
GPU, while providing an energy reduction of two orders of
magnitude. Regarding the effect of the techniques to improve
the memory subsystem, the prefetching architecture for the
Arc cache provides significant benefits in performance and
energy. On the other hand, the aim of the memory bandwidth
saving technique for the State Issuer is to reduce the number of
accesses to off-chip system memory. This technique achieves
a reduction of 20% in the total number of accesses to off-chip

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f M

em
or

y
Tr

af
fic

ASIC
ASIC+State

Overflows
Tokens
Arcs
States

Fig. 13: Memory traffic for the baseline ASIC and the version
using the optimization for the state fetching presented in
Section IV-B.

DRAM as reported in Figure 13. When using both techniques
(configuration labeled as ASIC+State&Arc) the accelerator
achieves 16.7x speedup and 1185x energy reduction with
respect to the CPU. Compared to the GPU, this configuration
provides 1.7x speedup and 287x energy reduction.

Finally, we evaluate the area of our accelerator for speech
recognition. The total area for the initial design is 24.06 mm2,
a reduction of 16.53x with respect to the area of the NVIDIA
GeForce GTX 980 (the die size for the GTX 980 is 398
mm2 [32]). The hardware for the prefetching architecture in
the Arc cache, i. e. the two FIFOs and the Reorder Buffer,
produce a negligible increase of 0.05% in the area of the
overall accelerator. The extra hardware for the State Issuer
required for our bandwidth saving technique increase overall
area by 0.02%. The total area for the accelerator including
both techniques is 24.09 mm2.

VII. RELATED WORK

Prior research into hardware acceleration for WFST-based
speech recognition has used either GPUs, FPGAs or ASICs.
Regarding the GPU-accelerated Viterbi search, Chong et
al. [10], [30] proposed an implementation in CUDA that
achieves 3.74x speedup with respect to a software decoder
running on the CPU. We use this CUDA implementation as our
baseline and show that an accelerator specifically designed for
speech recognition achieves an energy reduction of two orders
of magnitude with respect to the GPU. The GPU is designed to
perform many floating point operations in parallel and, hence,
it is not well-suited for performing a memory intensive yet
computationally limited WFST search.

Regarding the FPGA approach, Choi et al. [2], [33] present
an FPGA implementation that can search a 5K-word WFST
5.3 times faster than real-time, whereas Lin et al. [34] propose
a multi-FPGA architecture capable of decoding a WFST of
5K words 10 times faster than real-time. Their use of a
small vocabulary of just 5K words allows them to avoid the
memory bottlenecks that we have observed when searching
large WFSTs. Our accelerator is designed for large-vocabulary

10 100 1000
Decoding time per 1s of speech (ms)

1

10

100

1000

10000

En
er

gy
 p

er
 1

s
of

 s
pe

ec
h

(m
J)

CPU
GPU
ASIC
ASIC+State
ASIC+Arc
ASIC+State&Arc

Fig. 14: Energy vs decoding time per one second of speech.

speech recognition, it is 56 times faster than real-time when
searching a 125K-word WFST.

Regarding the ASIC approach, Price et al. [4] developed a
6 mW accelerator for a 5K-word speech recognition system.
Our work is different as we focus on large-vocabulary systems.
On the other hand, Johnston et al. [3] proposed a low-power
accelerator for speech recognition designed for a vocabulary of
60K words. Compared to the aforementioned accelerators, our
proposal introduces two innovative techniques to improve the
memory subsystem, which is the most important bottleneck
in searching larger WFSTs: a prefetching architecture for the
Arc cache and a novel bandwidth saving technique to reduce
the number of off-chip memory accesses for fetching states
from the WFST.

Prior work on hardware-accelerated speech recongnition
also includes proposals that are not based on WFSTs [35],
[36]. These systems use HMMs (Hidden Markov Models) to
model the speech. In recent years, the WFST approach has
been proven to provide significant benefits over HMMs [10],
[21], especially for hardware implementations [33]. Hence,
our accelerator focuses and is optimized for a WFST based
approach.

VIII. CONCLUSIONS

In this paper we design a custom hardware accelerator
for large-vocabulary, speaker-independent, continuous speech
recognition, motivated by the increasingly important role of
automatic speech recognition systems in mobile devices. We
show that a highly-optimized CUDA implementation of the
Viterbi algorithm achieves real-time performance on a GPU,
but at a high energy cost. Our design includes innovative
techniques to deal with memory accesses, which is the main
bottleneck for performance and power in theses systems. In
particular, we propose a prefetching architecture that hides
main memory latency for a large fraction of the memory
accesses with a negligible impact on area, providing 1.87x
speedup with respect to the initial design. On the other hand,
we propose a novel memory bandwidth saving technique that
removes 20% of the accesses to off-chip system memory.
The final design including both improvements achieves a

1.7x speedup with respect to a modern high-end GPU, while
reducing energy consumption by 287x.

ACKNOWLEDGMENT

This work is supported by the Spanish Ministry of Economy
and Competitiveness and FEDER funds of the EU under
contract TIN2013-44375-R.

REFERENCES

[1] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as a
service and its implications for future warehouse scale computers,” in
Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 27–
40. [Online]. Available: http://doi.acm.org/10.1145/2749469.2749472

[2] J. Choi, K. You, and W. Sung, “An fpga implementation of speech
recognition with weighted finite state transducers,” in Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference
on, March 2010, pp. 1602–1605.

[3] J. R. Johnston and R. A. Rutenbar, “A high-rate, low-power, asic speech
decoder using finite state transducers,” in Application-Specific Systems,
Architectures and Processors (ASAP), 2012 IEEE 23rd International
Conference on, July 2012, pp. 77–85.

[4] M. Price, J. Glass, and A. P. Chandrakasan, “A 6 mw, 5,000-word real-
time speech recognizer using wfst models,” IEEE Journal of Solid-State
Circuits, vol. 50, no. 1, pp. 102–112, Jan 2015.

[5] Google Now, https://en.wikipedia.org/wiki/Google Now.
[6] Apple Siri, https://en.wikipedia.org/wiki/Siri.
[7] Microsoft Cortana, https://en.wikipedia.org/wiki/Cortana %

28software%29.
[8] “IBM Watson Speech to Text,” http://www.ibm.com/smarterplanet/us/

en/ibmwatson/developercloud/speech-to-text.html.
[9] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,

M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The kaldi speech recognition toolkit,” in IEEE 2011
Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society, Dec. 2011, iEEE Catalog No.: CFP11SRW-
USB.

[10] K. You, J. Chong, Y. Yi, E. Gonina, C. J. Hughes, Y. K. Chen, W. Sung,
and K. Keutzer, “Parallel scalability in speech recognition,” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 124–135, November 2009.

[11] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel
wfstbased large vocabulary continuous speech recognition on a graphics
processing unit,” in in 10th Annual Conference of the International
Speech Communication Association (InterSpeech, 2009.

[12] J. Chong, E. Gonina, and K. Keutzer, “Efficient automatic speech
recognition on the gpu,” Chapter in GPU Computing Gems Emerald
Edition, Morgan Kaufmann, vol. 1, 2011.

[13] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning
supercomputer,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 609–622.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2014.58

[14] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “Shidiannao: Shifting vision processing
closer to the sensor,” in Proceedings of the 42Nd Annual International
Symposium on Computer Architecture, ser. ISCA ’15. New York,
NY, USA: ACM, 2015, pp. 92–104. [Online]. Available: http:
//doi.acm.org/10.1145/2749469.2750389

[15] A. L. Janin, “Speech recognition on vector architectures,” Ph.D. disser-
tation, University of California, Berkeley, 2004.

[16] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, vol. 17, no. 01,
pp. 5–20, 2007.

[17] R. Vergin, D. O’Shaughnessy, and A. Farhat, “Generalized mel fre-
quency cepstral coefficients for large-vocabulary speaker-independent
continuous-speech recognition,” Speech and Audio Processing, IEEE
Transactions on, vol. 7, no. 5, pp. 525–532, Sep 1999.

[18] L. Bahl, R. Bakis, P. Cohen, A. Cole, F. Jelinek, B. Lewis, and R. Mercer,
“Further results on the recognition of a continuously read natural
corpus,” in Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP ’80., vol. 5, Apr 1980, pp. 872–875.

[19] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech and Language, vol. 16, no. 1,
pp. 69 – 88, 2002. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0885230801901846

[20] X. Lingyun and D. Limin, “Efficient viterbi beam search algorithm using
dynamic pruning,” in Signal Processing, 2004. Proceedings. ICSP ’04.
2004 7th International Conference on, vol. 1, Aug 2004, pp. 699–702
vol.1.

[21] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A comparison of two
lvr search optimization techniques,” in IN PROC. INT. CONF. SPOKEN
LANGUAGE PROCESSING, 2002, pp. 1309–1312.

[22] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in Software, IEE Proceedings-, Feb 2004, pp. 96–96.

[23] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” in Proceedings of the 25th Annual International
Symposium on Microarchitecture, ser. MICRO 25. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1992, pp. 102–110. [Online].
Available: http://dl.acm.org/citation.cfm?id=144953.145006

[24] J. E. Smith, “Decoupled access/execute computer architectures,” ACM
Trans. Comput. Syst., vol. 2, no. 4, pp. 289–308, Nov. 1984. [Online].
Available: http://doi.acm.org/10.1145/357401.357403

[25] H. Igehy, M. Eldridge, and K. Proudfoot, “Prefetching in a texture cache
architecture,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, ser. HWWS ’98. New York,
NY, USA: ACM, 1998, pp. 133–ff. [Online]. Available: http:
//doi.acm.org/10.1145/285305.285321

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 469–480. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669172

[27] S. Li, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “McPAT 1.0: An
Integrated Power, Area, and Timing Modeling Framework for Multicore
Architectures,” Tech. Rep.

[28] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
asr corpus based on public domain audio books,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference
on, April 2015, pp. 5206–5210.

[29] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, Sept 2012, pp. 262–268.

[30] J. Chong, E. Gonina, and K. Keutzer, “Efficient automatic speech
recognition on the gpu,” Chapter in GPU Computing Gems Emerald
Edition, Morgan Kaufmann, 2011.

[31] NVIDIA Visual Profiler, https://developer.nvidia.com/nvidia-visual-
profiler.

[32] GeForce 900 series, https://en.wikipedia.org/wiki/GeForce 900 series.
[33] K. You, J. Choi, and W. Sung, “Flexible and expandable speech

recognition hardware with weighted finite state transducers,” Journal of
Signal Processing Systems, vol. 66, no. 3, pp. 235–244, 2011. [Online].
Available: http://dx.doi.org/10.1007/s11265-011-0587-9

[34] E. C. Lin and R. A. Rutenbar, “A multi-fpga 10x-real-time
high-speed search engine for a 5000-word vocabulary speech
recognizer,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’09. New
York, NY, USA: ACM, 2009, pp. 83–92. [Online]. Available:
http://doi.acm.org/10.1145/1508128.1508141

[35] P. J. Bourke, “A low-power hardware architecture for speech recognition
search,” Ph.D. dissertation, Carnegie Mellon University, 2011.

[36] B. Mathew, A. Davis, and Z. Fang, “A low-power accelerator
for the sphinx 3 speech recognition system,” in Proceedings
of the 2003 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, ser. CASES ’03. New
York, NY, USA: ACM, 2003, pp. 210–219. [Online]. Available:
http://doi.acm.org/10.1145/951710.951739

