
Abstract
Loops are the main time consuming part of  programs based
on floating point computations. The performance of the
loops is limited either by recurrences in the computation or
by the resources offered by the architecture. Several
general-purpose superscalar microprocessors have been
implemented with multiply-add fused floating-point units,
that reduces the latency of the combined operation and the
number of resources used. This paper analyses the influence
of these two factors in the instruction-level parallelism
exploitable from loops executed on a broad set of future
aggressive processor configurations. The estimation of
implementation costs (area and cycle time) enables a fair
comparison of these configurations in terms of final
performance and implementation feasibility. The paper
performs a technological projection for the next years in
order to foresee the possible implementable alternatives.
From this study we conclude that multiply-add fused units
may have a deep impact in raising the performance of future
processor architectures with a reasonable increase in cost.

1. Introduction

Current high-performance microprocessors rely on
hardware and software techniques to exploit the inherent
instruction-level parallelism (ILP) of the applications. These
processors make use of deep pipelines in order to reduce the
cycle time and wide instruction issue units to allow the
simultaneous execution of several instructions per cycle.

Very Long Instruction Word (VLIW) architectures are
oriented to exploit ILP. In a VLIW architecture, an
instruction is composed of a number of operations that are
issued simultaneously to the functional units (i.e. the
scheduling is performed at compile time so the dispatch
phase is very simple). Although there are few commercial
general purpose VLIW processors, these architectures have
been widely used in the DSP arena (as in the Texas
Instruments ‘C6701 [21] and Equator Map1000 [22]), they
have been subject of research in the last years and will
constitute the core of future designs [19].

The static nature of VLIW schedulings require good
compilation techniques to effectively exploit the ILP
available in real programs [5]. Software pipelining [10] is a
compilation technique that extracts ILP for the innermost
loops by overlapping the execution of several consecutive
iterations. In a software pipelined loop, the number of cycles
between the initiation of successive iterations (termed
Initiation Interval) is bounded either by the recurrences in
the dependence graph or by the resource constrains of the
target architecture [4][23][24].

Several techniques have been proposed to increase the
performance of loops bounded by the resource constrains.
The loops performance can be augmented by increasing the
number of functional units (replication technique), by
exploiting data parallelism at the functional unit level (like
in vector processors [27] or, in superscalar and VLIW
processors, using the widening technique [13][14][20]), or
by using functional units that can perform multiple
operations as a monolithic operation (e.g.fused multiply and
addFMA floating-point units perform a multiplication and a
dependent addition as a single operation).

As the number of transistors on a single chip continues to
grow, more hardware can be accommodated on a chip, so
future designs will use these techniques to exploit ILP
aggressively. Unfortunately, most of these techniques focus
on increasing the performance of resource-bound loops.
Consequently, the more aggressive become the architectures,
more critical become the recurrences.

The FMA operation reduces the latency of the
recurrences. Several current microprocessors implement this
operation (like the IBM RS/6000 [7] and POWER2 [28], and
the MIPS R8000 [6] and R10000 [30]). This paper studies
the influence of fused multiply-add functional units (fusion
technique) in future ILP aggressive architectures. We study
the maximum ILP achievable using this technique,
combined with other techniques that increase the
performance of resource-bound loops. In order to perform a
fair comparison of the different techniques, it is mandatory
to evaluate the effect in the final performance of several
factors: the influence of the compiler, the influence of the
register file size, and the hardware cost in terms of chip area
and cycle time.

The area cost defines those configurations that could be
implemented in the next microprocessor generations,
according to the predictions of theSemiconductor Industry
Association [26]. For each generation we estimate the
performance of a set of implementable configurations taking
into account the number of cycles required to execute the
programs and the cycle time. From this study we conclude
that the fusion technique has a significant effect on the final
performance of aggressive configurations. The technique has
a good theoretical performance, but also reduces the register
pressure, it gives more opportunities to the compiler to find
an optimal scheduling, and also has good performance/cost
efficiency.

All the evaluations have been performed for VLIW
architectures and numerical programs. Our workbench is
composed of 1180 loops that account for 78% of the
execution time of the Perfect Club [2]. The loops have been
obtained using the experimental tool Ictíneo [1] and software
pipelined usingHypernode Reduction Modulo Scheduling

Impact on Performance of Fused Multiply-Add Units in Aggressive VLIW
Architectures

David López, Josep Llosa, Eduard Ayguadé and Mateo Valero
Department of Computer Architecture. Polytechnic University of Catalunya.
UPC-Campus Nord, Mòdul D6. Jordi Girona 1-3, 08034 Barcelona (Spain)

E-mail: { david | josepll | eduard | mateo }@ac.upc.es



[17][18], a register pressure sensitive heuristic that achieves
near optimal schedules. Register allocation has been
performed using the wands-only strategy and the end-fit with
adjacency ordering [25]. When a loop requires more than the
available number of registers, spill code is added and the
loop is rescheduled [15][16].

The organization of the paper is as follows: Section 2
describes the replication, widening and fusion techniques
and illustrates, with an example, their performance limits.
Section 3 describes the FPUs that implement the FMA
operation and outlines its cost. Section 4 evaluates the
performance of a set of processor configurations where the
studied techniques are combined. First we perform an
estimation of the theoretical ILP limits of the techniques,
assuming perfect scheduling, a register file of infinite size
and a perfect memory. Then we evaluate the effect of the
scheduler and having a finite register file. Finally, we take
the costs into account and study the performance/cost
trade-offs of the techniques. Section 5 summarizes the main
conclusions of this work.

2. Motivating example

In a software pipelined loop, the number of cycles
between the initiation of successive iterations is named
Initiation Interval (II ). The II  defines the maximum
performance that can be obtained from the loop and is
bounded either by resources constrains in the architecture
(ResMII) or by cyclic dependence chains (recurrences) in the
dependence graph (RecMII). Its lower bound is termed the
Minimum Initiation Interval (MII ) and is computed asMII =
max (ResMII, RecMII).

In this section we use a sample loop (whose dependence
graph is shown in Figure 1.a.) to show these bounds and
possible alternatives to reduce them. In the Figure, nodes
represent operations (memory accesses or arithmetic
computations) and edges represent data dependences
between pairs of nodes. There are 3 memory operations
(loads L0 and L1, and store S6) and 4 arithmetic operations
(products *2, *3, *4 and addition +5). All dependences are
intra-loop dependences (i.e. occur between two operations
performed in the same iteration and have distance 0) except
for dependence (+5, *4) in which the result of +5 is used by
*4 one iteration later (loop-carried dependence of distance
1). In this graph, there is a recurrence composed of edges
(*4, +5) and (+5, *4) spawning over one iteration.

Figure 1.b illustrates the factors that contribute toResMII
andRecMII, assuming an architecture with a single memory
unit and a single arithmetical unit (all of them fully pipelined
and with a latency of one cycle):
• Resources. In this case, 3 cycles are required at least to
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Figure 1: a) Sample loop dependence graph and limits
for two processor configurations: b) 1 bus and 1
functional unit, c) 2 buses and 4 functional units.
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execute the 3 memory operations in the memory access
unit (bar labelledmemory) and 4 cycles are required at
least to execute the 4 arithmetical operations in the
arithmetical unit (bar labelledfpu). Therefore, the
arithmetic operations put higher constraints in the
execution of the loop and limit theResMII to 4.

• Recurrences. There is a single recurrence in the loop that
may limit its execution. For the architecture being
considered, 2 cycles are required to sequentially execute
the operations within the recurrence, and therefore the
RecMII is 2 (bar labelledrecurrences).
For a given architecture, and depending on the values of

ResMII and RecMII, loops can be classified into three
groups: balanced (ResMII = RecMII), resource-bound
(ResMII > RecMII) and recurrence-bound (ResMII <
RecMII) loops. For example, our working example fits in the
resource-bound cathegory limited by the arithmetic
operations. Making the architecture more aggressive in
terms of number of functional units can convert
resource-bound loops into balanced or recurrence-bound
loops. Also, reducing their latency can convert
recurrence-bound loops into balanced or resource-bound
loops. In the next subsections we analyse different
architectural alternatives to improve each of these 2 factors.

2.1 Resource-bound loops

In order to increase the performance of resource-bound
loops, the resources of the processor must be increased. In
this section we analyse two alternatives to make the
architecture more aggressive: resourcereplication and
widening. On one side, resource replication consists on
increasing the number of functional units available in the
processor. On the other side, resource widening [13] consists
on increasing the number of operations that each functional
unit can simultaneously perform per cycle (i.e. functional
units that operate with short vectors).

For example, Figure. 2.a shows a base configuration in
which we have one bus and one floating-point functional
unit (FPU). In this case, one memory and one arithmetical
operation can be issued per cycle. Higher performance can
be obtained by adding another bus and another FPU
(replication technique, Figure 2.b); in this case, two
independent memory accesses and two independent
arithmetic operations can be issued per cycle. The same peak
performance can also be obtained by duplicating the width
of both, the bus and the FPU (widening technique, Figure
2.c); in this case, two memory and two arithmetical
operations can also be issued per cycle. However, widening
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Figure 2: Different processor configurations based
on replication and widening: a) base configuration,
b) replication and c) widening.



is less versatile than replication, because it requires the
operations to becompactable (i.e. the same arithmetic
operation has to be performed in consecutive iterations
without data dependences between them, or access to
consecutive memory locations in the case of memory
operations). This analysis of compactability can be done at
compile time [12][14]. Although replication enables the
exploitation of more ILP than widening, its larger costs (in
terms of area and cycle time) precludes the use of high
degrees of replication in favour of a combination of small
degrees of replication and widening. A detailed
performance/cost analysis of different future processor
configurations based on a combination of replication and
widening can be found elsewhere [13].

The use of aggressive configurations (using replication
and/or widening) for the processor core does not affect the
performance of recurrence-bound loops and may covert
balanced or compute-bound loops into recurrence-bound
loops. In our working example, when the number of
resources is increased (as shown in Figure 1.c), the bars due
to memory and arithmetic operations are reduced. Notice
that at this point the dominant bar is the one due to the
recurrences, the performance will not improve even in an
architecture with an unbounded number of resources.

Figure 3 shows, for our workbench, the percentage of
time spent in recurrence, compute and memory bound loops
for different processor configurations (executed on an HP
9000/735 workstation and compiled with the +O3 flag,
which performs software pipelining among other
optimizations). Each configurationxZ includes Z functional
units and Z buses, with a latency of 4 cycles. For a
configuration with 1 FPU and 1 bus (as the one shown in
Figure 2.a) 61.8% of the total time is spent in
compute-bound loops, 30.7% in memory-bound loops and
only 7.5% in recurrence-bound loops. This indicates that the
loops of our workbench are slightly compute-bound. Notice
that the percentage of time spent in loops that become
recurrence bound increases when the aggressiveness of the
architecture increases. For configurations greater than x4,
more than 50% of the total time is spent in recurrence-bound
loops. As a consequence, techniques to improve the
performance of this kind of loops are necessary in order to
impact the final performance of aggressive architectures.

2.2 Recurrence-bound loops

In order to improve the performance of loops bounded by
recurrences, the number of cycles needed to perform the
operations in the recurrence has to be reduced. This
reduction can be achieved either by reducing the latency of
the functional units or by solving complex operations in the
same amount of time. The later option has been included in
the design of some current microprocessors with functional
units that execute a multiply instruction and an associated

Figure 3: Percentage of time spent in recurrence,
compute and memory bound loops for different
processor configurations.
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addition operations (FMA) as a single instruction. These
functional units reduces both the number of cycles needed to
execute the recurrence and the number of slots used to
schedule these operations.

For example, the dependence graph in our working
example has a recurrence composed of two nodes where a
product is followed by an addition. Figure 4 shows how the
graph is transformed when these two operations are fused in
a single FMA operation, thus reducing the number of
operations of the recurrence from 2 to 1, and reducing the
recurrence limit to 1 cycle.

A static analysis of our workbench reveals that 591 out of
the 1180 loops can make use of FMA functional units. For
these loops, Figure 5 shows the percentage of time spent in
loops that would benefit from having FMA operations for
differentxZ processor configurations. For each one:
• dotted line: it shows the percentage of time spent in

compute-bound loops that would benefit from having
FMA operations. Notice that in our base configuration,
more than 60% of the time is spent in this kind of loops. As
configurations become more aggressive, the number of
compute-bound loops are reduced, becoming less than 1%
in the largest configuration considered.

• dashed line: it shows the percentage of time spent in
recurrence-bound loops that would benefit from having
FMA operations (i.e. those in which this operation occurs
in the most limiting recurrence). As configurations become
more aggressive, the percentage of time spent in these
loops increase.
The solid line summarizes both effects and represents the

total percentage of time spent in loops that would benefit
from having FMA operations. Notice that this kind of
complex operations are dominant in numerical applications
and may affect the performance when aggressive
architectures are considered. In order to validate this thesis,
this paper analyses the impact of FMA operations in the
performance of future aggressive processor configurations
based on a performance/cost evaluation where ILP, area and
cycle time are taken into consideration.
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Figure 4: Graph transformation and impact in
performance limits in an architecture with 2 buses
and 4 FPU: a) without FMA and b) with FMA.
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Figure 5: Percentage of time spent in loops than would
benefit from implementing the FMA operation for
different processor configurations.
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3. Cost of Fused Multiply-and-Add FPUs

Some current microprocessors implement FPUs that
execute thefused multiply-and-add operation (FMA) as a
single instruction as T = (A x C) + B. In these FPUs, the
floating-point hardware is designed to accept up to three
operands for executing FMA instructions, while other
floating-point instructions requiring fewer than three
operands may utilize the same hardware by forcing constants
into the unused operands. In general, FPUs with FMA
implementations use a multiply array to compute the AC
product, followed by an adder to compute AC+B.

This operation has been implemented in the floating-point
units of the IBM RS/6000 [7], IBM POWER2 [28], MIPS
R8000 [6] and MIPS R10000 [30] microprocessors. In the
MIPS R10000, the FMA operation has been implemented by
chaining the multiplier FPU output with the adder FPU input
requiring rounding and alignment between them. Therefore
the MIPS R10000 requires 2 cycles to compute an add or a
mul, and 4 cycles to compute a FMA operation providing no
latency benefit. The only benefit is the reduction in
instruction bandwidth and in the registers requirements (no
register is required to store the intermediate result). On the
contrary, processors like the IBM POWER2 implement the
FMA operation integrating the multiplier and the adder
without rounding and alignment in the middle. Therefore in
the POWER2, the FMA operation has the same latency (two
cycles) as the individual add or mul operations

Implementing the FMA functional unit in a
microprocessor incurs several costs in terms of area and
cycle time. With respect to the FPUs, the area required for
the extra hardware needed to implement the FMA operation
is practically negligible because the area of a
general-purpose floating-point unit is mainly governed by
the area of the multiplier [9]. The main additional cost is due
to the associated register file. The overall size of a register
file is determined mainly by the size of a register cell. The
other components that are needed to access the register file
typically represent less than 5% of the area required by the
register cells [11].

The area of the register cell grows approximately as the
square of the number of ports added because each port forces
the cell to increase both the height and the width [8][11][12].
Implementing the FMA operation requires one additional
read port for every FPU, so it results in an increase of the
register file size. To illustrate this cost, Table 1 shows the
area cost of one configuration (named A) with 2 buses and 2
FPUs. In this case, each bus requires 1 read and 1 write
ports, and each FPU requires 2 read and 1 write ports.
Assuming a register file of 32 registers, the register file cost
results in 32.08x106 λ2 (the details of this cost model can be
found elsewhere [12]). If the FPUs implement the FMA
operation, one more read port is required for each FPU
(configuration B), resulting in a register file area of size 1.37
times greater. But a configuration with 2 FPUs that
implement FMA can issue 2 multiplications and 2 additions
per cycle, the same as a configuration with 4 FPUs
(configuration C) but at a lower cost (the area of B is 46.7%
of the area of C).

In addition, the register file access time can force the
cycle time in a VLIW architecture, and the access time is
governed by the number of registers, the width of the
registers and the size of each register cell (which depends on
the number of read and write ports). To calculate the impact
of the number of ports in the access time, we use a model

[13] based on the CACTI model for cache memory [29].
Next we show the impact of the number of ports using the
same configurations of the area cost example (A, B and C of
Table 1). Configuration B has an access time 8% slower than
configuration A, while the access time of configuration C (4
FPUs without FMA) is 42% slower than the access time of
configuration A. To reduce the access time, the register file
can be partitioned into several files, maintaining copies of all
the data [3], but at the cost of increasing the total area cost.
For example, configuration C has 10 read plus 6 write ports.
This RF can be also implemented by two identical copies,
where all functional units can write in both copies of the RF,
but only 1 bus and 2 FPUs read each copy. In this case, 5
read plus 6 write ports are required for each copy. This
implementation increases the register file area by 12.7%, but
reduces the access time from 42% to 21% slower than A.

4. Performance evaluation

In this section we first show an evaluation of the
performance limits that are expected from the use of
replication, widening and fusion techniques. We first
consider an ideal framework with a perfect scheduling and
an infinite register file. Then we make real both aspects and
analyse the influence of using a heuristic algorithm to do
software pipelining and having a finite register file. Finally
we consider implementation costs (area and cycle time) and
draw a set of conclusions from a performance/cost conscious
evaluation of the different implementation alternatives.

The processor configurations considered in this section
are named using two different possibilities:XwY and xZ
(whereZ equalsX timesY). Each one of these configurations
hasX bidirectional buses (to perform load/store operations)
and twice the number of functional units1. The width of the
resources isY words. For instance, configuration 2w1 has 2
buses and 4 FPUs and all the resources have a width of 1
word, while configuration 1w2 has 1 bus and 2 FPUs, all of
width 2 words. As the baseline configuration that we
consider is1w1, both configurations can be also namedx2
because they can issue 2 times the number of operations of
the baseline. The latencies are as follows: a store is served in
1 cycle; division and square root are not pipelined and
require 19 and 27 cycles, respectively; the rest of the
operations (load, add,...) are fully pipelined and require 4
cycles to be executed. We appendF to those configurations
in which FMA is implemented. The memory is ideal and all
references always hit in the cache.

4.1 Maximum ILP achievable

First of all we analyse the performance of FMA under the
following ideal situations: perfect scheduler (i.e. always
achieves theMII ) and unbounded number of registers (so
there is no need to perform spill code).

1.Preliminary studies show that a relation of 2 FPUs for each bus is the
most balanced configuration (see Figure 3). Also, we have based the cost
calculations on the MIPS R10000, which can issue 2 floating point and 1
memory operation per cycle.

Table 1:   Area cost for several 32-RF configurations.

Configuration Ports Area  of a
memory cell

Total RF
area (λ2)

A) 2 bus + 2 fpu 6R+3W 14664λ2 32.08x106

B) 2 bus + 2 FMA fpu 8R+3W 21420λ2 43.87x106

C) 2 bus + 4 fpu 10R+6W 45820λ2 93.84x106



Figure 6.a shows the additional performance benefits of
using FMA for a set of processor configurations based on
replication (xZ with Zw1). On one side, notice that the
performance that is obtained does not scale with the peak
performance of the architecture. This is due to the fact that
aggressive configurations convert resource-bound loops into
recurrence-bound loops; as a consequence, adding more
resources does not contribute to a real increase in
performance. On the other hand, notice that the difference
between using FMA (dotted plot) or not using FMA (dashed
plot) is practically a constant; this is due to the fact that the
FMA operation produces benefits to recurrence-bound loops
in very aggressive configurations (see Figure 5), maintaining
an increase of performance similar to the obtained for
compute-bound loops in configurations with a smaller
degree of aggressiveness.

Figure 6.b shows the additional performance benefits of
using FMA for a reduced set of processor configurations that
apply combinations of both replication and widening. Notice
that FMA can play an important role, specially in aggressive
configurations where replication is used (for instance,
configuration1w8F has a performance 2.1% better than1w8,
while 8w1F has a performance 9.4% better than8w1).

4.2 The effect of spill code on performance

The goal of the studied techniques is to increase the ILP
of loops by reducing their Initiation Interval. Regretfully,
reducing theII  can increase the register requirements [15]. If
the number of registers required to schedule a loop on an
architecture exceeds the number of physical registers
available, spill code must be introduced in order to free some
registers [16]. However, spill code increases the memory
traffic and can result in an increase of theII , with the
associated performance degradation. We schedule the loops

Figure 6: Performance benefits of using FMA in
processor configurations based on a) replication and
b) a combination of replication and widening.
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using the HRMS heuristic [17][18], a register pressure
sensitive heuristic that achieves near optimal schedules.
Register allocation is performed using the wands-only
strategy and the end-fit with adjacency ordering [25].

Figure 7 shows the performance for different processor
configurations and sizes of the register file (r-RF
configuration uses a register file ofr registers,Y words
wide). The baseline configuration considered is1w1 with a
256-RF. This configuration does not require spill code and
therefore is equivalent to the baseline configuration in Figure
6. Notice that the configuration8w1 does not include the
32-RF bar; this is because this configuration can produce 24
results per cycle (8 memory and 16 FPU), and we consider a
4-cycle latency configuration. In this case, the register
pressure is so high, that the scheduler fails to produce a valid
schedule with the available registers. This situation becomes
more critical in configurations with a factor higher than x8,
and this is the reason why we do not present the results of
these configurations with this latency model. Figure 7 shows
the expected results: the performance grows with the
aggressiveness of configurations, and the register file size
has an important impact on the final performance. The FMA
operations (white portion in each bar) improves the
performance of all configurations but the increase is higher
for those configurations with high register pressure.

Another important point can be observed in this Figure:
there is a significative difference between the performance
reported in this section, and the theoretical performance
shown in section 4.1. For instance, there is an increase of the
theoretical performance of 7.5% from configuration 8w1 to
configuration 8w1F; when the loop is scheduled with a
64-register file, this difference grows up to 20.5%. This
difference is due to other factors that have an important
contribution on the final performance. In this point we are
going to analyse these factors.

The total amount of cycles required to execute a loop in a
given architecture can be divided into three components:
• theMII : this is the minimum number of cycles required to

execute a loop; it depends on the characteristics of the loop
itself and on the architecture.

• cycles due to spill code: these are the cycles due to the code
introduced to fit the scheduling in the available number of
registers.

• and cycles due to the scheduler heuristic: these are the
cycles added by the scheduler when it fails in finding the
optimal scheduling.
Figure 8 shows, for the same processor configurations,

the distribution of cycles introduced by each of these
components. Each plot is divided in 8 columns grouped in
pairs representing the register file size (horizontal axis): the
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Figure 7: Performance of some processor
configurations for several sizes of the register file.
Baseline: configuration 1w1 with a 256-RF



right column in each pair represents an architecture with
FMA and the left column an architecture without FMA. The
use of FMA reduces the cycles required for all the factors
previously defined:
• the dark gray part represents the minimum theoretical

cycles, so it is independent of the register file size. Notice
that using FMA reduces the MII because some operations
have been fused (and there are less operations to be
scheduled). For instance, the number of cycles is reduced
in 10.7% when FMA is used in configuration4w1.

• the light gray part shows the spill code cycles. FMA
reduces the register pressure of the loops because it does
not require a register to store the intermediate result (e.g.
the number of cycles due to spill code is reduced in 35.7%
when FMA is used in configuration4w1 with a 32-RF).

• the black part represents the scheduler cycles. The
reduction of the number of operations to schedule (due to
the reduction of operations in the loop and to the reduction
in the spill code required) makes the graph less complex;
therefore, the scheduler has more opportunities to find a
schedule closer to the optimal. For example, the number of
cycles added by the scheduler is reduced in 20.9% when
FMA is used in configuration4w1 with a 32-RF.
From the analysis of Figure 8, one can conclude that

using FMA has an impact on the final performance greater
than the performance that we can expect if we only take into
account the theoretical analysis. For instance, configuration
4w1F with a 32-RF has a performance 22.9% better than
configuration4w1, while the difference in the theoretical
analysis was 10.7%.

4.3 Performance/cost trade-offs

In this section we try to identify the role of replication,
widening and FMA when their implementation is taken into

Figure 8: Classification of the spent cycles
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consideration. Area and cycle time cost can easily offset any
gain in ILP or even worse, make a configuration non
implementable. The 1994 Semiconductor Industry
Association (SIA) predictions [26] are used to define a set of
future technology generations and their characteristics.

We study a broad set of architectures that implements the
replication, widening and fusion techniques. In order to
perform a realistic study, the register files of the
configurations have been partitioned to reduce their access
time (and therefore, the configurations cycle time).
Configurations are labelledXwY(Z:n) (i.e. X buses and2*X
FPUs, all of widthY, with a RF ofZ registers of widthY,
partitioned inn-blocks) orXwYF(Z:n) (i.e. the same but the
FPUs can implement the FMA operation).

The methodology used for this evaluation is as follows.
First we calculate the cost of the tested configurations and
decide which is implementable for each technology
generation (we consider that a configuration is
implementable for a technology generation if its FPUs area
plus its register file area do not exceed 20% of the total chip
area). Second, for each implementable configuration we
calculate its cycle time, assuming that the cycle time is
defined by the register file access time. Each FPU requires
an amount of time to perform one operation; its latency in
cycles depends on the processor cycle time. The cycle
models we have used are listed in Table 3 and assume that
the baseline configuration (1w1) uses the 4-cycles model.

Other configurations will fit into the appropriate model
depending on its relative (from the1w1 configuration) cycle
time. A configuration with a relative cycle time Tc belongs
to the z-cycles model, where z=4/Tc. Finally, we perform
the scheduling to find the cycles required1. The cycles
required to execute all the loops times the cycle time give us
the final performance. In all cases, we use a fixed timing
model based on technology parameters forλ=0.25. We have
not attempted to factor-in reductions in cycle time due to
future technology generations.

Before going into the final results, let us analyse the
individual effects of some parameters on the configurations
evaluated:
• Number of registers. Having large register files reduces the

register pressure and the need of spill code. However, the
increase in the cycle time may counteract this gain. For
example, Figure 9.a shows the performance/cost ratio

1.The cycles required are calculated as the cycles per iteration (Initiation
Interval) times the number of iterations performed in the original loop
execution.

Table 2:  SIA predictions in 1994

1998 2001 2004 2007 2010

λ (µm) 0.25 0.18 0.13 0.10 0.07

Size (mm2) 300 360 430 520 620

λ2 per chip (x106) 4800 11111 25443 52000 126530

λ2 / mm2 (x106) 16 30.86 59.17 100 204.08

Table 3:   Cycle models.

cycle model
latency (in cycles)

store +,*, load div sqrt

4-cycles 1 4 19 27

3-cycles 1 3 15 21

2-cycles 1 2 10 14

1-cycle 1 1 5 7



when we increase the number of registers available in the
register file, for configuration 1w1. Notice that the
performance for this configuration declines when we use a
register file larger than 64. This configuration has
negligible need for spill code when a 64-RF (or bigger) is
available, so an increase of the registers file does not affect
the cycles required, but increases the cycle time.

• Replication. Configurations based on replication report
good increases in ILP. However, high degrees of
replication can make the configuration unimplementable
(they occupy more than 20% of the total chip area) or
suffer a decrease in performance because a small increase
in IPC (instructions per cycle) is counteracted with a high
increase of the cycle time. For instance, Figure 9.b shows
the performance/cost ratio when only replication is
applied.

• Replication and widening. The same peak performance can
be obtained by applying different degrees of replication
and widening. Although replication is more versatile and
reported higher ILP returns, cycle time puts configurations
based on small degrees of widening in a better position, as
shown in Figure 9.c forx8 configurations.

• Fused Multiply-add. FMA returns good performance
relative to its low implementation cost. The three plots in
Figure 9 also shows the performance of the same
configurations when FMA is included (the cross marks).
For instance, configuration8w1F(128:8) performs 21.1%
better than8w1(128:8), with an increment of only 8.3% in
the area. Also, configuration2w4F(128:2) has a
performance 2% better than configuration4w2(128:4)and
only has 72% of its area requirements.
Assuming the SIA predictions and our area cost models,

Figure 10 shows the area cost for a broad range of processor
configurations that include replication, widening and FMA
with different sizes for the RF (notice that the vertical axis
has logarithmic scale). Each horizontal line represents, each
technology generation, the 20% in area devoted to
implement this processor core and therefore defines the set
of implementable configurations for this technology.

Figure 11 shows, for each technology, the five
configurations that achieve the best performance. First of all,
notice that none of the most aggressive configurations are in
the top-five configurations due to their high cost: the
configurations that offer best performance are the ones that
combine small degrees of replication and widening. For each
technology, we have also highlighted the “eligible”

Figure 9: effect of a) increasing the RF size, b)
replication and c) different ways to implement a
configuration with the same peak performance. All
figures compare FPUs with and without FMA.
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configurations (black triangles). A configuration is “eligible”
if there is not any configuration that can achieve the same
performance, or better, with a small cost. Notice that all
except for two “eligible” configurations implement the FMA
operation in their FPUs. For example, for a technology of
λ=0.13, the configuration with best performance is
2w4(128:2), using 18.7% of the total chip area. The
configuration with the second best performance is
2w2F(64:2) that achieves 99.3% of the performance of the
first one, using only 8.18% of the total chip area.
Configuration 2w4F(128:2) is not included in the plot
because it requires 20.6% of the total chip area (more than
20%) but offers a performance 12.5% greater than
2w4(128:2).

We can conclude that using FPUs that implement the
FMA operation has some costs, but the benefits that offers

Figure 10: Implementable configurations for each
tehcnology generation considered.

1w
1

2w
1

1w
2

4w
1

2w
2

1w
4

8w
1

4w
2

2w
4

1w
8

16
w

1

8w
2

4w
4

2w
8

1w
16

100

1000

10000

ar
ea

*1
0^

6*
la

m
bd

a^
2

with FMA 256-RF 128-RF 64-RF 32-RF

0.25

0.18

0.13

0.10

0.07

16 18 20

% die area

1.25

1.50

1.75

2.00

sp
ee

d-
up

2w1F(32:2)
1w2(32:1)

1w2F(32:1)

1w2(64:1)

1w2F(64:1)

16 18 20

% die area

2.00

2.25

2.50

2.75

3.00

sp
ee

d-
up

2w2F(64:1)
1w4F(128:1)2w2(64:2)

1w4F(64:1)

2w2F(64:2)

10 15 20

% die area

2.50

2.75

3.00

sp
ee

d-
up

2w2F(128:2)
2w4(128:1)

4w1F(128:4)
2w2F(64:2) 2w4(128:2)

10 13 16

% die area

2.50

2.75

3.00

3.25

3.50

sp
ee

d-
up

4w2F(128:2)
4w2(128:4)

2w4F(128:2)

2w4F(256:2)

4w2F(128:4)

5 10

% die area

2.75

3.00

3.25

3.50

sp
ee

d-
up

4w2(128:4)

2w4F(128:2)

2w4F(256:2) 4w2F(256:4)

4w2F(128:4)

a) b)

c) d)

e)

Figure 11: Top five configurations. The increment of
the clock speed has not been taken into account

Technology:
a) 0.25
b) 0.18
c) 0.13
d) 0.10
e) 0.07



overcome these costs, so it is a good solution to increase the
performance of aggressive configurations.

5. Conclusions

In order to exploit the inherent ILP of numerical
applications, aggressive processors are required. More
operations can be executed per cycle by either increasing the
number of functional units (replication technique) or by
increasing the number of data each functional unit can
process per cycle (widening technique). However, the more
aggressive the processor more critical become the
recurrences. Fused multiply-add functional units increase the
number of operations performed by cycle and improve
performance in recurrence-bound loops that contain
multiply-add chains in their critical recurrence.

In this paper we have evaluated the impact on
performance and cost of FMA functional units in aggressive
architectures. In particular we have evaluated the influence
of FMA units in combination with the widening and
replication techniques. The evaluations have been performed
over a large number of software pipelined loops from the
Perfect Club benchmarks assuming a VLIW architecture.

We have analysed the effects of FMA on resource-bound
loops and on recurrence-bound loops. We have studied the
ILP limits of each configuration in optimal conditions,
showing that FMA units provide a significant advantage.
This is because FMA units increase the peak number
operations that can be performed per cycle and can reduce
the latency of critical recurrences. When a limited number of
registers is considered, the advantage of using FMA
increases. This increment in performance is due to two
reasons: the influence of spill code (the register requirements
are reduced) and the influence of the scheduler (it has a
simpler task since there are less operations to schedule).

Taking into account that using FMA units is more
expensive in terms of area cost and cycle time, we have
estimated the cost of the configurations considered. We
compare the performance of the configurations that can be
built for the next processor generations. The performance
has been calculated using the register file cycle time. To
perform a realistic comparison, the register file cycle time
has been reduced using the partitioning technique and the
FPUs latency has been adapted to the cycle time. From this
study we conclude that, for a given technology, the best
performance is obtained for configurations that use FMA
units requiring less area.
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