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Abstract Several techniques have been proposed to increase the

Loops are the main time consuming part of programs base‘performance of loops bounded by the resource constrains.
on ﬁoating point computations. ‘Ighg perfo?mgnce of theThe loops performance can be augmented by increasing the

loops is limited either by recurrences in the computation Ornurrrb_e_r OL functlorlllall_ units ﬁrepfllcatl_on Itechn:quel), I'Ey
by the resources offered by the architecture. SeveraSXPloiting data para e|32n71 at the functiona :m't e\(/je \/(Ill\(/av
general-purpose superscalar microprocessors have bee!n VECtor proc_essorr]s [27] or, in shupersca ar 1612 )
implemented with multiply-add fused floating-point units’grocessors,f using t lewujenmfg}; technique [1‘13][ Il ?D*lor
that reduces the latency of the combined operation and th?Y u?_lng unctiona I'tl;\mts L att_ can p‘ar O”I?_ lmUt'dp e
number of resources used. This paper analyses the influenCPerations as a monolithic operation (éuged multiply an

of these two factors in the instruction-level parallelism @ddFMA floating-point units perform a multiplication and a
exploitable from loops executed on a broad set of futuredePendent addition as a single operat[on)l. h .
aggressive processor configurations. The estimation o AS the number of transistors on a single chip Contmges to
implementation costs (area and cycle time) enables a faiJroW. more hardware can be accommodated on a chip, so
comparison of these configurations in terms of finalfuture designs will use these techniques to exploit ILP
performance and implementation feasibility. The paperdd9ressively. Umortuna}tely, most Olf these tecf;)nlqugslfocus
erforms a technological projection for the next years in@" !Ncreasing the perjormance of resource-bound l00ps.
grder to foresee theg possﬁblje implementable angmativeSConseq_u_ently, the more aggressive become the architectures,
From this study we conclude that multiply-add fused unitsmo_lr_‘;j'] crltg:'alp?ecome :_he recu(;rences.th lat ¢ the
may have a deep impact in raising the performance of futur e operation reduces the latency o

; i ; : recurrences. Several current microprocessors implement this
processor architectures with a reasonable increase in cost. operation (iike the IBM RS/6000 [7] and POWER? [28], and

the MIPS R8000 [6] and R10000 [30]). This paper studies
1. Introduction the influence of fused multiply-add functional units (fusion
technique) in future ILP aggressive architectures. We study

Current high-performance microprocessors rely onthe maximum ILP achievable using this technique,
hardware and software techniques to exploit the inherencombined with other techniques that increase the
instruction-level parallelism (ILP) of the applications. These performance of resource-bound loops. In order to perform a
processors make use of deep pipelines in order to reduce tffair comparison of the different techniques, it is mandatory
cycle time and wide instruction issue units to allow theto evaluate the effect in the final performance of several
simultaneous execution of several instructions per cycle. factors: the influence of the compiler, the influence of the

Very Long Instruction Word (VLIW) architectures are register file size, and the hardware cost in terms of chip area
oriented to exploit ILP. In a VLIW architecture, an and cycle time.
instruction is composed of a number of operations that ar The area cost defines those configurations that could be
issued simultaneously to the functional units (i.e. theimplemented in the next microprocessor generations,
scheduling is performed at compile time so the dispatctaccording to the predictions of tf8=miconductor Industry
phase is very simple). Although there are few commerciaAssociation [26]. For each generation we estimate the
general purpose VLIW processors, these architectures hayperformance of a set of implementable configurations taking
been widely used in the DSP arena (as in the Texainto account the number of cycles required to execute the
Instruments ‘C6701 [21] and Equator Map1000 [22]), theyprograms and the cycle time. From this study we conclude
have been subject of research in the last years and withat the fusion technique has a significant effect on the final
constitute the core of future designs [19]. performance of aggressive configurations. The technique has

The static nature of VLIW schedulings require good a good theoretical performance, but also reduces the register
compilation techniques to effectively exploit the ILP pressure, it gives more opportunities to the compiler to find
available in real programs [5]. Software pipelining [10] is aan optimal scheduling, and also has good performance/cost
compilation technique that extracts ILP for the innermostefficiency.
loops by overlapping the execution of several consecutive All the evaluations have been performed for VLIW
iterations. In a software pipelined loop, the number of cyclesarchitectures and numerical programs. Our workbench is
between the initiation of successive iterations (termeccomposed of 1180 loops that account for 78% of the
Initiation Interval) is bounded either by the recurrences in execution time of the Perfect Club [2]. The loops have been
the dependence graph or by the resource constrains of tlobtained using the experimental tool Ictineo [1] and software
target architecture [4][23][24]. pipelined usingHypernode Reduction Modulo Scheduling
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Figure 1: a) Sample loop dependence graph and limits 3) b) €)
for two processor configurations: b) 1 bus and 1 Figure 2: Different processor configurations based
functional unit, ¢) 2 buses and 4 functional units. on replication and widening: a) base configuration,

[17][18], a register pressure sensitive heuristic that achieve b) replication and c) widening.

near optimal schedules. Register allocation has bee execute the 3 memory operations in the memory access

performed using the wands-only strategy and the end-fit witt ynit (bar labellednemory and 4 cycles are required at

adjacency ordering [25]. When a loop requires more than th |east to execute the 4 arithmetical operations in the

available number of registers, spill code is added and th arithmetical unit (bar labelledfpu). Therefore, the

loop is rescheduled [15][16]. . . arithmetic operations put higher constraints in the
The organization of the paper is as follows: Section 2 execution of the loop and limit tiResMIlto 4.

describes the replication, widening and fusion techniques Recurrences. There is a single recurrence in the loop that

and illustrates, with an example, their performance limits. may jimit its execution. For the architecture being

Section 3 describes the FPUs that implement the FMA considered, 2 cycles are required to sequentially execute

operation and outlines its cost. Section 4 evaluates th ne gperations within the recurrence, and therefore the
performance of a set of processor configurations where th RecMilis 2 (bar labelledecurrences

studied techniques are combined. First we perform ar . : ;
e : P : For a given architecture, and depending on the values of
estimation of the theoretical ILP limits of the teChn'queS’Relel and RecMI| loops can be classified into three

assuming perfect scheduling, a register file of infinite size . _ )

and a perfect memory. Then we evaluate the effect of th'(gé%l;ﬁl'l b>ala£g§|\aI(DR(?';\Sn'\glIre_cuEggcﬁ/g-bﬁoaizo(ggglv?l?ugd

scheduler and having a finite register file. Finally, we takeR : S
ecMl)) loops. For example, our working example fits in the

the costs into account and study the performance/cos P : :
i : ; ; rresource-bound cathegory limited by the arithmetic
trade-offs of the techniques. Section 5 summarizes the ma'operations. Making the architecture more aggressive in

conclusions of this work. terms of number of functional units can convert
2. Motivating example resource-bound loops into balanced or recurrence-bound
loops. Also, reducing their latency can convert

In a software pipelined loop, the number of cyclesrecurrence-bound loops into balanced or resource-bound

between the initiation of successive iterations is namedoops. In the next subsections we analyse different

Initiation Interval (I1). The Il defines the maximum architectural alternatives to improve each of these 2 factors.

performance that can be obtained from the loop and i

bounded either by resources constrains in the architectur2.1 Resource-bound loops

(ResMI) or by cyclic dependence chains (recurrences) in the

dependence grapiRécMI)). Its lower bound is termed the In order to increase the performance of resource-bound
Minimum Initiation Interval(MIl) and is computed adll = loops, the resources of the processor must be increased. In
max (ResMll, RecMll) this section we analyse two alternatives to make the

In this section we use a sample loop (whose dependenc@rchitecture more aggressive: resounaplication and
graph is shown in Figure 1.a.) to show these bounds anwidening On one side, resource replication consists on
possible alternatives to reduce them. In the Figure, nodeincreasing the number of functional units available in the
represent operations (memory accesses or arithmetiprocessor. On the other side, resource widening [13] consists
computations) and edges represent data dependencon increasing the number of operations that each functional
between pairs of nodes. There are 3 memory operatiorunit can simultaneously perform per cycle (i.e. functional
(loads LO and L1, and store S6) and 4 arithmetic operationunits that operate with short vectors).

(products *2, *3, *4 and addition +5). All dependences are For example, Figure. 2.a shows a base configuration in
intra-loop dependences (i.e. occur between two operationwhich we have one bus and one floating-point functional

performed in the same iteration and have distance 0) exceunit (FPU). In this case, one memory and one arithmetical
for dependence (+5, *4) in which the result of +5 is used byoperation can be issued per cycle. Higher performance can
*4 one iteration later (loop-carried dependence of distanctke obtained by adding another bus and another FPU
1). In this graph, there is a recurrence composed of edge(replication technique, Figure 2.b); in this case, two

(*4, +5) and (+5, *4) spawning over one iteration. independent memory accesses and two independent

Figure 1.b illustrates the factors that contribut®ésMll arithmetic operations can be issued per cycle. The same peak
andRecMIl, assuming an architecture with a single memoryperformance can also be obtained by duplicating the width
unit and a single arithmetical unit (all of them fully pipelined of both, the bus and the FPU (widening technique, Figure
and with a latency of one cycle): 2.c); in this case, two memory and two arithmetical
» Resources. In this case, 3 cycles are required at least operations can also be issued per cycle. However, widening



is less versatile than replication, because it requires th
operations to becompactable(i.e. the same arithmetic
operation has to be performed in consecutive iteration:
without data dependences between them, or access
consecutive memory locations in the case of memory
operations). This analysis of compactability can be done a
compile time [12][14]. Although replication enables the
exploitation of more ILP than widening, its larger costs (in
terms of area and cycle time) precludes the use of higl
degrees of replication in favour of a combination of small
degrees of replication and widening. A detailed
performance/cost analysis of different future processol
configurations based on a combination of replication anc
widening can be found elsewhere [13].

recurrences

cycles

in

transformation and
performance limits in an architecture with 2 buses
and 4 FPU: a) without FMA and b) with FMA.

Figure 4: Graph impact

The use of aggressive configurations (using replicatioraddition operations (FMA) as a single instruction. These
and/or widening) for the processor core does not affect thfunctional units reduces both the number of cycles needed to
performance of recurrence-bound loops and may covetexecute the recurrence and the number of slots used to
balanced or compute-bound loops into recurrence-bounschedule these operations.

loops. In our working example, when the number of

For example, the dependence graph in our working

resources is increased (as shown in Figure 1.c), the bars dexample has a recurrence composed of two nodes where a
to memory and arithmetic operations are reduced. Noticproduct is followed by an addition. Figure 4 shows how the
that at this point the dominant bar is the one due to thqgraph is transformed when these two operations are fused in
recurrences, the performance will not improve even in ara single FMA operation, thus reducing the number of

architecture with an unbounded number of resources.

operations of the recurrence from 2 to 1, and reducing the

Figure 3 shows, for our workbench, the percentage orecurrence limit to 1 cycle.

time spent in recurrence, compute and memory bound loog

A static analysis of our workbench reveals that 591 out of

for different processor configurations (executed on an HFthe 1180 loops can make use of FMA functional units. For
9000/735 workstation and compiled with the +O3 flag, these loops, Figure 5 shows the percentage of time spent in

which performs software pipelining among
optimizations). Each configuratioZ includes Z functional
units and Z buses, with a latency of 4 cycles. For ae
configuration with 1 FPU and 1 bus (as the one shown ir
Figure 2.a) 61.8% of the total time is spent in

compute-bound loops, 30.7% in memory-bound loops anc
only 7.5% in recurrence-bound loops. This indicates that the
loops of our workbench are slightly compute-bound. Notice
that the percentage of time spent in loops that becom
recurrence bound increases when the aggressiveness of te
architecture increases. For configurations greater than x:
more than 50% of the total time is spent in recurrence-boun
loops. As a consequence, techniques to improve thi
performance of this kind of loops are necessary in order t
impact the final performance of aggressive architectures.

2.2 Recurrence-bound loops

In order to improve the performance of loops bounded by
recurrences, the number of cycles needed to perform th
operations in the recurrence has to be reduced. Thi
reduction can be achieved either by reducing the latency
the functional units or by solving complex operations in the
same amount of time. The later option has been included i
the design of some current microprocessors with functiona
units that execute a multiply instruction and an associate!
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Figure 3: Percentage of time spent in recurrence,
compute and memory bound loops for different
processor configurations.

other loops that would benefit from having FMA operations for
differentxZ processor configurations. For each one:

dotted line: it shows the percentage of time spent in
compute-bound loops that would benefit from having
FMA operations. Notice that in our base configuration,
more than 60% of the time is spent in this kind of loops. As
configurations become more aggressive, the number of
compute-bound loops are reduced, becoming less than 1%
in the largest configuration considered.

dashed line: it shows the percentage of time spent in
recurrence-bound loops that would benefit from having
FMA operations (i.e. those in which this operation occurs
in the most limiting recurrence). As configurations become
more aggressive, the percentage of time spent in these
loops increase.

The solid line summarizes both effects and represents the

total percentage of time spent in loops that would benefit
from having FMA operations. Notice that this kind of
complex operations are dominant in numerical applications
and may affect
architectures are considered. In order to validate this thesis,
this paper analyses the impact of FMA operations in the
performance of future aggressive processor configurations
based on a performance/cost evaluation where ILP, area and
cycle time are taken into consideration.

the performance when aggressive
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Figure 5: Percentage of time spent in loops than would
benefit from implementing the FMA operation for
different processor configurations.



3. Cost of Fused Multiply-and-Add FPUs Table 1: Area cost for several 32-RF configurations.
Area ofa | Total RF

Some current microprocessors implement FPUs tha Configuration Ports | memory cell| area §?)
execute thdfused multiply-and-adaperation (FMA) as a >
single instruction as T = (A x C) + B. In these FPUs, the | A)2bus+2fpu 6R+3W| 14664\ | 32.08x10

floating-point hardware is designed to accept up to thre¢| B)2bus+2 FMAfou|| 8R+3W| 2142002 | 43.87x16
operands for executing FMA instructions, while other >
floating-point instructions requiring fewer than three C) 2bus + 4 fpu 10R+6W 45820 | 93.84x16
operands may utilize the same hardware by forcing constan{13] based on the CACTI model for cache memory [29].
into the unused operands. In general, FPUs with FMANext we show the impact of the number of ports using the
implementations use a multiply array to compute the ACsame configurations of the area cost example (A, B and C of
product, followed by an adder to compute AC+B. Table 1). Configuration B has an access time 8% slower than
This operation has been implemented in the floating-poinconfiguration A, while the access time of configuration C (4
units of the IBM RS/6000 [7], IBM POWER?2 [28], MIPS FPUs without FMA) is 42% slower than the access time of
R8000 [6] and MIPS R10000 [30] microprocessors. In theconfiguration A. To reduce the access time, the register file
MIPS R10000, the FMA operation has been implemented bican be partitioned into several files, maintaining copies of all
chaining the multiplier FPU output with the adder FPU inputthe data [3], but at the cost of increasing the total area cost.
requiring rounding and alignment between them. ThereforéFor example, configuration C has 10 read plus 6 write ports.
the MIPS R10000 requires 2 cycles to compute an add or This RF can be also implemented by two identical copies,
mul, and 4 cycles to compute a FMA operation providing nowhere all functional units can write in both copies of the RF,
latency benefit. The only benefit is the reduction inbut only 1 bus and 2 FPUs read each copy. In this case, 5
instruction bandwidth and in the registers requirements (ndéad plus 6 write ports are required for each copy. This
register is required to store the intermediate result). On thimplementation increases the register file area by 12.7%, but
contrary, processors like the IBM POWER?2 implement thereduces the access time from 42% to 21% slower than A.
FMA operation integrating the multiplier and the adder .
Withouteounding andgaligngment in thepmiddle. Therefore in4' Performance evaluation
the POWER2, the FMA operation has the same latency (twi
cycles) as the individual add or mul operations
Implementing the FMA functional unit in a
microprocessor incurs several costs in terms of area an
cycle time. With respect to the FPUs, the area required fo
the extra hardware needed to implement the FMA operatiol

In this section we first show an evaluation of the
performance limits that are expected from the use of
replication, widening and fusion techniques. We first
consider an ideal framework with a perfect scheduling and
an infinite register file. Then we make real both aspects and

is practically negligible because the area  of aanalyse the influence of using a heuristic algorithm to do

neral-our floating-point unit is mainl verned b software pipelining and having a finite register file. Finally
general-purpose floaling-point unit IS mainly governed by, consider implementation costs (area and cycle time) and
the area of the multiplier [9]. The main additional cost is duéq,a,y 5 set of conclusions from a performance/cost conscious
to the associated register file. The overall size of a registe,, aiuation of the different implementation alternatives.

file is determined mainly by the size of a register cell. The . . . . . .

other components that greyneeded to accesg the register __The pr%cessor Ct\tl)vnfl%gfrfatlonts consglet(ed '\’; th'g SZeC“O”
; 0 ; are named using two different possibilitiéwY and x

typically represent less than 5% of the area required by th(whereZ equalsx timesY). Each one of these configurations

register cells [11]. P ;
The area of the register cell grows approximately as th(hasx bidirectional buses (to perform load/store operations)

square of the number of ports added because each port forcand twice the number of functional urtitThe width of the

the cell to increase both the height and the width [8][11][12].FeSources i words. For instance, configuration 2wl has 2
Implementing the FMA operation requires one additionalPuses and 4 FPUs and all the resources have a width of 1
read port for every FPU, so it results in an increase of thWword, while configuration 1w2 has 1 bus and 2 FPUs, all of
register file size. To illustrate this cost, Table 1 shows theVidth 2 words. As the baseline configuration that we

area cost of one configuration (named A) with 2 buses and consider islwl, both configurations can be also naméd
FPUs. In this case, each bus requires 1 read and 1 wriP€cause they can issue 2 times the number of operations of

ports, and each FPU requires 2 read and 1 write portdhe baseline. The latencies are as follows: a store is served in
Assuming a register file of 32 registers, the register file cosl cycle; division and square root are not pipelined and

results in 32.08x1\2 (the details of this cost model can be require 19 and 27 cycles, respectively, the rest of the

; operations (load, add,...) are fully pipelined and require 4
found elsewhere [12]). If the FPUs implement the FMA oy jes'to be executed. We appéfitb those configurations
operation, one more read port is required for each FPL

(configuration B), resulting in a register file area of size 1_3_,|rr;f\/evrhe|(r:]2elzsl\/g|6\v\1|§;£n ﬁilteirr?fﬁéegéc-m? memory is ideal and all

times greater. But a configuration with 2 FPUs that

implement FMA can issue 2 multiplications and 2 additions4.1 Maximum ILP achievable

per cycle, the same as a configuration with 4 FPUs

(configuration C) but at a lower cost (the area of B is 46.7%  First of all we analyse the performance of FMA under the

of the areg_of C). _ ) ) following ideal situations: perfect scheduler (i.e. always
In addition, the register file access time can force theachieves theMll) and unbounded number of registers (so

cycle time in a VLIW architecture, and the access time isthere is no need to perform spill code).

governed by the number of registers, the width of the — - - .

1.Preliminary studies show that a relation of 2 FPUs for each bus is the

registers and the size of ea.Ch register cell (which dep(_ands Cmost balanced configuration (see Figure 3). Also, we have based the cost
the number of read and write ports). To calculate the impaccaicuiations on the MIPS R10000, which can issue 2 floating point and 1

of the number of ports in the access time, we use a modmemory operation per cycle.
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using the HRMS heuristic [17][18], a register pressure

sensitive heuristic that achieves near optimal schedules.
Register allocation is performed using the wands-only

strategy and the end-fit with adjacency ordering [25].

Figure 7 shows the performance for different processor
configurations and sizes of the register fileRF
configuration uses a register file ofregisters,Y words
wide). The baseline configuration consideredvid with a
256-RF This configuration does not require spill code and
therefore is equivalent to the baseline configuration in Figure
6. Notice that the configuratioBwl does not include the
32-RFbar; this is because this configuration can produce 24
results per cycle (8 memory and 16 FPU), and we consider a
4-cycle latency configuration. In this case, the register
pressure is so high, that the scheduler fails to produce a valid
schedule with the available registers. This situation becomes
more critical in configurations with a factor higher than x8,
and this is the reason why we do not present the results of
these configurations with this latency model. Figure 7 shows
the expected results: the performance grows with the
aggressiveness of configurations, and the register file size
has an important impact on the final performance. The FMA
operations (white portion in each bar) improves the
performance of all configurations but the increase is higher

for those configurations with high register pressure.

Another important point can be observed in this Figure:
there is a significative difference between the performance
reported in this section, and the theoretical performance
shown in section 4.1. For instance, there is an increase of the
theoretical performance of 7.5% from configuration 8wl to
configuration 8wl1F; when the loop is scheduled with a
64-register file, this difference grows up to 20.5%. This
difference is due to other factors that have an important
contribution on the final performance. In this point we are
going to analyse these factors.

T T T T
x2 x16

Figure 6: Performance benefits of using FMA in
processor configurations based on a) replication and
b) a combination of replication and widening.

Figure 6.a shows the additional performance benefits o
using FMA for a set of processor configurations based or
replication &Z with Zwl). On one side, notice that the
performance that is obtained does not scale with the pes
performance of the architecture. This is due to the fact tha . .
aggressive configurations convert resource-bound loops int . The total amount of cycles required to execute a loop in a
recurrence-bound loops; as a consequence, adding modiven architecture can be divided into three components:
resources does not contribute to a real increase i theMIl: this is the minimum number of cycles required to
performance. On the other hand, notice that the differenc €xecute a loop; it depends on the characteristics of the loop
between using FMA (dotted plot) or not using FMA (dashed itself and on the architecture.
plot) is practically a constant; this is due to the fact that the® Cycles due to spill code: these are the cycles due to the code

in very aggressive configurations (see Figure 5), maintaining registers. o
an increase of performance similar to the obtained for* @and cycles due to the scheduler heuristic: these are the

Compute-bound |Oops in Configurations with a smaller CyC_leS added by the scheduler when it fails in flndlng the
degree of aggressiveness. OllgFlma| ssch%dulmg.f " foura
- " s igure 8 shows, for the same processor configurations,
Figure 6.b shows the additional performance benefits Othe distribution of cycles introduced by each of these
using FMA for a reduced set of processor configurations thacom onents. Each plot is divided in 8 columns arouned in
apply combinations of both replication and widening. Notice * : P L p : S ; groupe
that FMA can play an important role, specially in aggressivepa'rs representing the register file size (horizontal axis): the
configurations where replication is used (for instance, 0

configurationlw8F has a performance 2.1% better tharg = é";l
while 8wlF has a performance 9.4% better tRart). 5.0 I| ] E%%
]

4.2 The effect of spill code on performance

speed-up

The goal of the studied techniques is to increase the ILI
of loops by reducing their Initiation Interval. Regretfully,
reducing thdl can increase the register requirements [15]. If
the number of registers required to schedule a loop on a
architecture exceeds the number of physical register
available, spill code must be introduced in order to free som:
registers [16]. However, spill code increases the memon Figure 7:
traffic and can result in an increase of the with the

Performance  of
_ ¢ configurations for several sizes of the register file.
associated performance degradation. We schedule the loo| Baseline: configuration 1wl with a 256-RF

some processor



consideration. Area and cycle time cost can easily offset any
gain in ILP or even worse, make a configuration non
implementable. The 1994 Semiconductor Industry
Association(SIA) predictions [26] are used to define a set of
future technology generations and their characteristics.

Table 2: SIA predictions in 1994

1998 | 2001| 2004 2007 2010

N (um) 0.25[| 0.18] 0.13] 01 0.07
Size (mnf) 300 | 360 | 430| 520/ 620

[= spill mm schem= Ml |

1wl
1

w2

A2 per chip (x18) || 4800 | 11111 25448 52000 126530

A2/ mn? (x10P) 16 |30.86| 59.11 100 204.0B

We study a broad set of architectures that implements the
replication, widening and fusion techniques. In order to
perform a realistic study, the register files of the
configurations have been partitioned to reduce their access
time (and therefore, the configurations cycle time).
Configurations are labelledwY (Z:n)(i.e. X buses an@*X
FPUs, all of widthY, with a RF ofZ registers of widthy,
partitioned inn-blocks) orXwYF(Z:n)(i.e. the same but the
FPUs can implement the FMA operation).

The methodology used for this evaluation is as follows.
First we calculate the cost of the tested configurations and
decide which is implementable for each technology
generation (we consider that a configuration is
implementable for a technology generation if its FPUs area

32 64 128 256 32 64 128 256 plus its register file area do not exceed 20% of the total chip
Figure 8: Classification of the spent cycles area). Second, for each implementable configuration we

right column in each pair represents an architecture witicalculate its cycle time, assuming that the cycle time is
EMA and the left column an architecture without EMA. The defined by the register file access time. Each FPU requires

use of FMA reduces the cycles required for all the factordN amount of time to perform one operation; its latency in
previously defined: cycles depends on the processor cycle time. The cycle

« the dark gray part represents the minimum theoreticaM@d€ls we have used are listed in Table 3 and assume that
cycles, so it is independent of the register file size. Notice "€ Paseline configuratioril) uses the 4-cycles model.

2w2

8wl

2w4
w8

that using FMA reduces the MIl because some operation Table 3:  Cycle models.

have been fused (and there are less operations to t latency (in cycles)

scheduled). For instance, the number of cycles is reduce cycle model | i— s oad div sqit

in 10.7% when FMA is used in configuratiéwl Toviies T 7 15 ~
 the light gray part shows the spill code cycles. FMA y

reduces the register pressure of the loops because it do 3-cycles 1 3 15 21

not require a register to store the intermediate result (e.c 2-cycles 1 2 10 14

the number of cycles due to spill code is reduced in 35.7% 1-cycle 1 1 5 7

when FMA is used in configuratictwlwith a 32-RF).
the black part represents the scheduler cycles. Th

reduction of the number of operations to schedule (due tt; : ; ; ; ;
the reduction of operations in the loop and to the reductiort'me' A configuration with a relative cycle time Tc belongs

in the spill code required) makes the graph less comple><to the z-cycles model, where Z#TcLl Finally, we perform

therefore, the scheduler has more opportunities to find {he scheduling to find the cycles requiredhe cycles
schedule closer to the optimal. For example, the number créquired to execute all the loops times the cycle time give us
cycles added by the scheduler is reduced in 20.9% whethe final performance. In all cases, we use a fixed timing
FMA is used in configuratioAw1 with a 32-RF. model based on technology parameters\fd.25. We have
From the analysis of Figure 8, one can conclude thahot attempted to factor-in reductions in cycle time due to

using FMA has an impact on the final performance greate'Uture technology generations.

than the performance that we can expect if we only take int, Before going into the final results, let us analyse the
account the theoretical analysis. For instance, configuratioindividual effects of some parameters on the configurations
4w1F with a 32-RF has a performance 22.9% better thar€valuated: _ _ , ,
configuration4wl, while the difference in the theoretical * Number of registers. Having large register files reduces the

Other configurations will fit into the appropriate model
depending on its relative (from thev1 configuration) cycle

analysis was 10.7%. register pressure and the need of spill code. However, the
increase in the cycle time may counteract this gain. For
4.3 Performance/cost trade-offs example, Figure 9.a shows the performance/cost ratio

. . . . L 1.The cycles required are calculated as the cycles per iteration (Initiation
_In this section we try to identify the role of replication, |nterval) times the number of iterations performed in the original loop
widening and FMA when their implementation is taken into execution.
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replication and c) different ways to implement a
configuration with the same peak performance. All
figures compare FPUs with and without FMA.

Figure 10: Implementable configurations for each
tehcnology generation considered.

; ; : . configurations (black triangles). A configuration is “eligible”

\r/ggiasrl[ev:/efhr;cre%sre (t:rgt?]f%uum;btﬁ)rnoflr\t/avgszlst?\lrgt%\éall{aht;? 'tr;]éhif there is not any configuration that can achieve the same

performance for this configuration declines when we use iperformance, or .bette,[, with a small cost. Notice that all
except for two “eligible” configurations implement the FMA

reg'ﬁte& file :ja;ger t”and64.hThls 6Z?£Eguragpn ha-Soperation in their FPUs. For example, for a technology of
negaglule need for spif code when a (or bigger) 'S)\:O.ls, the configuration with best performance is

available, so an increase of the registers file does not aﬁe'2W4(128:2) using 18.7% of the total chip area. The

the cycles required, but increases the cycle time, configuration with the second best performance is

Replication. Configurations based on replication report X .
good increases in ILP. However, high degrees 0@W2F(64.2)th:;}t achieves 99.3% of the performance of the
first one, using only 8.18% of the total chip area.

replication can make the configuration un'mplementab|EConfiguration 2WAF(128:2) is not included in the plot

they occupy more than 20% of the total chip area) or - A -
guﬁgr a deg%/ease in performance because a ana” inc)reabecause it requires 20.6% of the total chip area (more than
20%) but offers a performance 12.5% greater than

in IPC (instructions per cycle) is counteracted with a high2 4(128:2
increase of the cycle time. For instance, Figure 9.b show“W (128:2).
We can conclude that using FPUs that implement the

the performance/cost ratio when only replication is
applied. FMA operation has some costs, but the benefits that offers
3.00 4

Replication and widening. The same peak performance ca
be obtained by applying different degrees of replication
and widening. Although replication is more versatile and =
reported higher ILP returns, cycle time puts configurations ’§ 175+
based on small degrees of widening in a better position, & g
shown in Figure 9.c fax8 configurations.

2.00

1.50

1w2F(64:1)
A

1W2F(32:1)
1w2(32: A1)A

Fused Multiply-add. FMA returns good performance
relative to its low implementation cost. The three plots in
Figure 9 also shows the performance of the same
configurations when FMA is included (the cross marks).
For instance, configuratioBw1F(128:8)performs 21.1%
better tharBw1(128:8) with an increment of only 8.3% in
the area. Also, configuration2w4F(128:2) has a
performance 2% better than configuratéw?2(128:4)and
only has 72% of its area requirements.
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Figure 10 shows the area cost for a broad range of process
configurations that include replication, widening and FMA
with different sizes for the RF (notice that the vertical axis
has logarithmic scale). Each horizontal line represents, eac
technology generation, the 20% in area devoted tc
implement this processor core and therefore defines the s
of implementable configurations for this technology.

Figure 11 shows, for each technology, the five
configurations that achieve the best performance. First of al
notice that none of the most aggressive configurations are i
the top-five configurations due to their high cost: the
configurations that offer best performance are the ones thi
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combine small degrees of replication and widening. For eacl Figure 11: Top five configurations. The increment of

technology, we have also highlighted the “eligible”

the clock speed has not been taken into account
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