
 1

Reducing wasted resources to help achieve green data centers

Jordi Torres, David Carrera, Kevin Hogan, Ricard Gavaldà, Vicenç Beltran, Nicolás Poggi
Barcelona Supercomputing Center (BSC) - Technical University of Catalonia (UPC) - Barcelona (Spain)

torres@ac.upc.edu

Abstract

In this paper we introduce a new approach to the
consolidation strategy of a data center that allows an
important reduction in the amount of active nodes required
to process a heterogeneous workload without degrading
the offered service level. This article reflects and
demonstrates that consolidation of dynamic workloads
does not end with virtualization. If energy-efficiency is
pursued, the workloads can be consolidated even more
using two techniques, memory compression and request
discrimination, which were separately studied and
validated in previous work and is now to be combined in a
joint effort. We evaluate the approach using a
representative workload scenario composed of numerical
applications and a real workload obtained from a top
national travel website. Our results indicate that an
important improvement can be achieved using 20% less
servers to do the same work. We believe that this serves as
an illustrative example of a new way of management:
tailoring the resources to meet high level energy efficiency
goals.

1. Introduction
Companies are now focusing more attention than ever on
the need to improve energy efficiency. Up to now, the
notion of "performance" has been much related with
"speed". This required datacenters and supercomputing
centers to consume huge amounts of electrical power and
produce a big amount of heat that requires expensive
cooling facilities. Besides the cost of energy, a new
challenge for them is the increasing pressure to reduce the
carbon footprint. Since many UK and EU regulations and
campaigns demand greener businesses, a cap-and-trade
system for carbon credits is to be introduced in 2010.
Commercial electricity consumption is a major factor in
rising atmospheric CO2 levels and data centres are a
significant part of the problem. Currently energy costs are
rising and Data Center’s equipment are stressing the power
and cooling infrastructure. However, the main issue is not
the current amount of data-centre emissions, but the fact
that data-centre emissions are increasing faster than other
carbon emissions [15]. For this reason nowadays there is a
big interest in “Green” data and supercomputer centers
[9,28].

In this scenario, the research community is being
challenged to rethink data center strategies, adding energy
efficiency to a list of critical operating parameters that
already includes service ability, reliability and
performance.
A large variety of power-saving proposals have been
presented in the literature such as dynamic voltage scaling
and frequency scaling [14, 23]. However, some authors
[12, 7] have argued that workload consolidation and
powering off spare servers is a good effective way to save
power and cooling energy. The low average utilization of
servers is a well known cost concern in data center
management. It has only been a short while since “One
application – one server” was the dominant paradigm. This
situation clearly implies server sprawl where the servers are
underutilized. Data centers started to solve this by packing
through consolidation to reduce the number of machines
required. Server consolidation implies combining
workloads from separate machines and different
applications into a smaller number of systems and has
become very popular following the advances in
virtualization technologies [16]. This solves some
interesting challenges; less hardware is required, less
electrical consumption is needed for server power and
cooling and less physical space is required. This is a
widely adopted strategy used by companies [27] to increase
the efficiency in managing their server environment and is
assumed to maximize the utilization of their existing
resources. As we will discuss further in this paper, we
should consider new techniques complementary to
consolidation to dramatically reduce the energy
consumption and further reduce the resources required.
Request discrimination is introduced to identify and reject
those requests that consume system resources but have no
value for an application (e.g. requests coming from web
crawlers created by competitor businesses for spying
purposes). We will also consider another technique,
memory compression used to convert CPU power into
extra memory capacity to overcome system underutilization
scenarios caused by memory constraints. We study the use
of these techniques by describing a representative scenario
composed of a realistic heterogeneous workload. The
techniques described here reduce the number of nodes
necessary to meet a certain service level criteria. The main
contribution of this article is to reflect and demonstrate that

 2

the consolidation through virtualization of heterogeneous
workloads is not enough to save energy, and we will
present ways of rescuing resources through reducing the
resources wasted. The rest of the paper is organized as
follows. Section 2 describes the basics of dynamic resource
management and the techniques that we applied in our
work. Section 3 discusses our studies and obtained results.
In Section 4 we study the related work found in the
literature. Finally, some conclusions and future work are
discussed in sections 5 and 6.

2. Consolidated environment
2.1 Managing a consolidated and virtualized

environment
Consolidation and virtualization can be combined to

reduce the management complexity of large data centers as
well as to increase the energy efficiency of such a system.
But even in a scenario where the resources are consolidated
and virtualized, utilizing all the capacity of the components
that are switched on (and consuming power) is not always
easy. Deciding a collocation of a set of applications in a
node to perfectly fit and exploit all the resources of the
system is a hard problem to solve, especially when tenths
or even hundreds of nodes and applications can be found in
a data center. Furthermore, the fact that the demand
associated with each resource of the system for a given
application may not be related in any way to its demand for
other resources (i.e. an application with a large memory
footprint may not be very demanding in terms of CPU
power) makes it become a structural problem that requires
some constraints to be relaxed if we want to overcome it.
The techniques proposed in this paper are studied in the
context of a shared data center running a set of applications
and being operated by an automatic service management
middleware such as that described in [21,25] but other
approaches could be considered. The management
middleware monitors the actual service level offered to
each running application and dynamically changes the
configuration of the system to make the applications meet
their goals. In particular, the system has to decide in what
nodes these instances are going to be placed: this is what is
known as the placement problem.

The placement problem is to find a placement of
applications on servers, known to be NP-hard [11,6] and
heuristics must be used to solve it. Given a certain
workload, changing the allocated CPU power to an
application makes a significant difference in the service
level offered by that application. But changing the amount
of memory allocated to an application results in an even
higher impact, because the application can be placed or not,
depending on whether the amount of memory reserved to
run it is enough or not to place it. This leads to a scenario
where the placement problem can be represented as two
different problems: placing applications following memory

constraints and spreading CPU resources amongst the
placed instances. The objective of our work is not to focus
on solving the placement problem but to introduce a new
degree of freedom into it to allow the system find a new set
of application placements that offer the same service level
to each application but require different resource
allocations. This objective is achieved by relaxing the
allocation constraints, and by relaxing the hardest
constraint in the system: the available physical resources in
each node of the data center.

For the purpose of our work, we will assume that the
data center uses virtualization technology [2] to control the
resources allocated to each application by running each
instance inside a virtual machine container. In the scope of
this paper we’ll use a simple instance placement algorithm
to illustrate the benefits of our techniques, but any other
approach could be considered. In order to better define the
placement scenario, it can be assumed that the system is
able to derive the relation between resource allocation and
obtained service level for each application in the system, as
is reported in [21].

2.2 Recycling through resource transformation

After virtualizing a system, some resources may still not
be used by any application. The demand associated with
each resource of the system for a given application may not
be related in any way to the demand for other resources
(i.e. an application with a large memory footprint may not
be very demanding in terms of CPU power), which can
potentially lead to an underutilization of some resources in
the system. To illustrate this situation we will show a usual
placement problem: some applications could be placed on a
node in terms of CPU power (they would meet their
performance goals), but the memory capacity of the system
makes it impossible to place all the applications together.
As a result, one extra node must be used to place one of the
applications, and both of the nodes remain underutilized in
terms of CPU.

Memory compression is a widely studied topic that can
be very helpful for the placement problem. It allows the
system to increase the density of the placement (number of
applications placed on a node) and better exploit the
resources of the system. This process can be understood as
a resource transformation: CPU cycles are converted into
extra memory. The amount of extra memory produced
using this technique can potentially go beyond
consolidation through virtualization in two aspects: firstly,
allowing the placement of an extra application that did not
fit in a node before, therefore reducing note
underutilization; and secondly, increasing the performance
of a placed application that, with a given amount of
memory, can still run but at a fraction of the maximum
achievable performance (i.e. producing a big volume of
swapping activity).

 3

Some of our recent work, described in [3], is focused on
revisiting the memory compression topic by targeting
advanced hardware architectures (current multiprocessors
and multi-core technologies such as CELL and Niagara
[3]). This study concludes that memory compression can be
carried out without observing a significant performance
impact in many commercial applications (the study is
performed over the SPECWeb2005 [26] application). The
relation between the CPU power dedicated to compress
memory and the memory gain obtained for three different
levels of memory compressibility is represented in [3].
Obviously, this relation is always defined by the level of
memory compression achievable given a set of
applications. From the point of view of the applications,
the overhead produced by memory compression techniques
is negligible because although accessing compressed data
is slower than accessing regular memory, it is still faster
than accessing a standard SCSI disk. This means that the
reduction in swapping by adding compressed memory as
well as caching more data in the compressed memory can
still result in a performance improvement for most
applications.

2.3 Reduction through discrimination

A fraction of the resources are wasted on work that
yields no added value for the application or the company
running it: consider a webserver for an e-commerce site,
and the amount of work performed for customers that will
not buy. Or an even greater problem are clients that request
work that can be harmful to the system: consider requests
to this webserver coming from denial-of-service attacks, or
the traffic generated by malicious bots or requests coming
from web crawlers created by competitor businesses with
spying purposes. Any potentially harmful requests that can
be detected should be banned as soon as possible.

Let us comment on the work in [19], which addresses
the problem of detecting malicious bots for the purpose of
banning them. The case study in these works is a national
online travel agency that works as an electronic
intermediary between customers and service providers
(such as airline companies). More precisely, in [19,20] and
later experiments we have used web traffic logs from
different periods of the year, ranging from one day to a
week of traffic, with up to 3,7 million transactions. Each
transaction is a particular request to the web site (such as
requesting a page download, possibly including many
database searches). Transactions are grouped into user
sessions, with an average length of about 8 transactions per
session for non-buying sessions, and about 18 transactions
per session for sessions that end in a purchase. About 6.7%
of transactions belong to sessions which will end in
purchase. The problem tackled in [19] is that of detecting
stealing bots in e-commerce applications. Content stealing
on the web is becoming a serious concern for information

and e-commerce websites. In the practices known as web
fetching or web scraping [10], a stealer Bot simulates a
human web user to extract desired content off the victim’s
website. Not only that, but in a B2B scenario, the victim
incurs the costs of searching the provider’s web for a
supposed “customer” that will never buy, and loses the real
customers who will instead buy via the stealer’s web.

The work in [19] investigated whether it was possible to
identify with reasonable certainty bots accessing a web site
for automated banning so that the system could stop the
corresponding session and free the allocated resources. In
the mentioned online travel agent website, [19] concluded
that around 15% to 20% of the traffic corresponds to bots
other than simple crawlers. Note that a feature of stealer
bots is the large amount of search requests, hence this large
traffic figure. Applying machine learning techniques, the
authors were able to detect around 10%-12% of the total
traffic as bots with a low % of “false alarms” and
negligible overhead at runtime. This percentage of traffic
could be banned in the real scenario, even when the system
is not overloaded, since it is actually harmful to the
company’s interests to serve them. While the interest of the
authors in [19] is leveraging revenue loss from the spurious
transactions, it is easy to see this technique as a way to
reduce the allocated resources: If we expect that we could
ban 10%-12% of the incoming traffic, we could reduce the
resources assigned to the application by a similar
percentage when deploying it.

In any case, a key point is finding the relation between
load reduction and resource reduction. The experiments in
some of our EU-funded projects [5], where we have
researched the dynamic management of resources, let us
conclude that there is essentially a linear relation among
load volume and CPU usage. That is, if we reduce the
number of requests by 10% or 15%, the CPU requirements
will be reduced by at least 10% or 15%. The reduction will
probably be larger if the transactions we discard are
especially heavy ones (which is the case for stealing bots).
We cannot at this moment, make similar claims for other
resources, such as memory, which we are still
investigating. For this reason we center our work only on
CPU even though we believe that we will be able to extend
the conclusions to other resources soon.

3. Experiments
In this section we evaluate our proposal. First we will

demonstrate the waste of resources using the state-of-the-
art automatic management middleware, considering only a
small set of web applications in order to ease the
explanation of the idea. Later we will demonstrate the
impact of the proposal using a simulation that reproduces a
heterogeneous workload scenario.

 4

3.1 Waste of resources
In order to demonstrate that the current state of

virtualization is wasting resources, we will consider a set of
4 different web applications. The characteristics of each
application are described in table 1. Neither allocation
restrictions nor collocation restrictions are defined, but
placement is still subject to resource constraints, such as
the node memory and CPU capacity.

 App 1 App 2 App 3 App 4

Minimum
Memory

2300 MB 1300 MB 1100 MB 1000 MB

Maximum
CPU required

2200Mhz 2000 Mhz 2000 Mhz 1900 Mhz

Table 1. Memory and CPU required by the Applications

We consider that each server has four 2.2GHz CPU and
4GB of memory (based on an IBM JS21 blade). We
assume that the virtualization overhead is 1GB of memory
and 1 CPU. This assumption is based on our previous
experience [5]. Table 2 summarizes the specifications of
each node. Notice that application 1 can not be placed
together with any other application because of the memory
constraints. Applications 2, 3 and 4 can be collocated, but
only two of them can be placed together in each node.
Table 1 only indicates the maximum CPU required (spike)
for each application over time to meet its service level
goals. That is, the maximum value for the minimum
amount of CPU power that must be allocated to each
application if its service level goal is to be met. There is no
overloading at any point during the experiment (the
aggregated CPU power can satisfy the requirement of all
applications over the time). This placement leads to a
situation where the three nodes are clearly underutilized in
terms of CPU since the maximum amount of CPU required
at any point during the execution is 8100 Mhz while we
have a total of 19800 Mhz at our disposal from the 3
servers.

No virtualization Virtualization overhead

CPU
capacity

Memory
capacity

Effective CPU
capacity

Effective mem.
capacity

4x 2.2Ghz 4096MB 3x 2.2Ghz
(6.6 Ghz) 3072 MB

Table 2. Memory and CPU capacity of each node before and after

considering the virtualization overhead.

3.2 Tailoring of resources

3.2.1 Baseline placement

In this section we describe what a modern management
middleware would be expected to do in the scenario
described above. As we said before, application 1 can not
be placed together with any other of the other applications
because of its memory requirements. Given that the CPU

demand of application 1 can be satisfied by one single
node, we assume that this application would be placed in
one node for the whole length of the experiment. The other
applications must be placed in the two remaining nodes.
Given that all three applications don’t fit in one single node
due to the memory constraint, two of them will have to be
placed together while the other application will be alone on
one node. Thus, the placement algorithm should decide at
this point what two applications are going to be placed
together. For this experiment we decide to pick application
2 and 3 to be deployed on node 2, and application 4 to be
placed in node 1. Notice that other choices are possible but
that the result would be analogous to that presented here.

3.2.2 Adding Tailoring Resources

At this point, we introduce the use of memory
compression to increase the memory capacity of a node on
demand. The memory, as discussed in Section 2.2, is
produced at a cost in terms of CPU power. Notice that in
the scenario described in section 3.1, memory constraints
lead to a situation where the three nodes are clearly
underutilized in terms of CPU power. Looking at the data
provided in Section 2.2 (which is based on real
experiments conducted with realistic applications on top of
an IBM JS21 blade server) one can observe how,
depending on the compression rate achievable for a given
set of applications placed in a node, a relation can be
established between the CPU power required to compress
memory and the increase in available memory observed. In
the scope of this example, we assume an achievable
compression factor of 47%, and will use an increased
memory capacity for each active node of 6GB at a cost of
1320MHz of CPU power. With the new constraints, a new
range of possible placements is opened up, including the
option of having all four applications placed together on
one single node if the amount of CPU power required can
be satisfied by that single node. When the aggregated CPU
demand exceeds the capacity of a single node an
application is migrated to a second node which is switched
on for this purpose. If at a given point the aggregated CPU
demand for a set of applications can be satisfied again with
one single node, all these applications are placed in the
same node again. More details on this can be found in the
report [32].

Regarding the CPU, we make use of the request
discrimination technique described earlier in section 2.3.
With the help of machine learning it is possible to
determine the characteristics of requests that are of no
benefit to the company running the service; for example
Bots. These have been estimated to account for 15% to
20% of all web traffic so the filtering out of these can
reduce the load by a significant amount. We assume that
we can filter out 10% of all the web traffic, based on the
figures that the authors of [19] achieved in their work.

 5

There is a direct linear correlation between the amounts of
CPU required to process requests, so if we reduce the
number of requests by 10%, we are effectively reducing the
amount of CPU needed by the same amount [5].

Application Memory CPU

(Mhz)
Running
Time

of runs
per day

BLAST1 550 MB 4400 15 min 24
BLAST2 550 MB 4400 30 min 12

ImageMagick1 750 MB 2200 127 min 1
ImageMagick2 750 MB 2200 100 min 2

Table 3. Requirements of the Numerical Applications.

3.3 Heterogeneous workload

3.3.1 Workload Description

To generate the heterogeneous workload we modify and
extend the previous workload, described in table 1, by
creating a scenario in which we consider a total of 12
applications. The first set of 4 are designated as "Web"
applications, and have the same memory and CPU
requirements as defined in table 1, but are scheduled to run
at times that conform to the workload of a travel agency
website during the high-season. There are clearly visible
patterns in the load over the day and week, containing
spikes during the day, troughs at night and generally lower
loads at the weekend. The next set of 4 applications are
also "Web" applications but are scheduled to run
throughout the whole simulation. They use the same
memory as before but have a variable CPU demand that is
roughly in accordance with the demand on the travel
agency website. Only the CPU is varied since it has been
discovered through other work [5] that there is a highly
linear correlation between the CPU and the workload level,
whereas the same does not hold true for the memory.

Figure 1. The amount of CPU used over time in the default setup

The last set of 4 applications are numerical applications

which do not display the same workload characteristics as
the previous ones. We have taken two specific, but
representative, numerical applications for this simulation;
BLAST[29] is a bioinformatics application which generally

has short job running times (in the order of 15 to 30
minutes), and ImageMagick [30] is an image rendering
application which has longer job running times (in the
order of 120 minutes). The numerical applications are
considered to have static CPU and memory demands when
they are running and we have scheduled them so that the
short running jobs arrive every hour or two and the long
running jobs only arrive once or twice a day. The exact
needs of each numerical application can be seen in Table 3.

3.3.2 Baseline Placement

After generating the heterogeneous workload above, we
first ran the simulation with the default baseline placement
algorithm. The workload pattern of the travel website is
easy to see in figure 1, where we show the amount of CPU
used over a simulated time of one week.

Figure 2. The percentage of the allocated (a) memory capacity,

and (b) CPU, being used under the baseline placement

While we are benefiting from consolidation and
virtualization, reducing the number of servers we need to
run the applications when compared with the “one
application – one server” paradigm, there is still
considerable wastage in the system. We can measure the
exact amount of resources being wasted at each moment in
time by subtracting the total load from the sum of the
capacities of each server allocated to us during that
moment in time. For example, if we have 2 servers

 6

allocated to us and they both have 1GB of memory free,
this means that we are wasting 2GB of memory in total.
For 2 servers this means that we are only using 66% of the
memory available to us since the effective memory
capacity available to each server after virtualization is 3072
MB. Conversely, it also means that we are wasting 33% of
that resource. Figures 2 show the percentage of the
allocated resources that are being used/wasted over time
using the default baseline placement, when considering
CPU and memory respectively. The graphics show that
there is very little memory being wasted, but the CPU
appears to be highly underutilized. It suggests that the
memory is acting as the largest constraint when we are
placing applications on the servers.

3.3.3 Tailored Placement

In the next stage of our experiment we used the same
workload with a simple demand based placement algorithm
which can make use of the compression and request
discrimination techniques. Note that during this simulation
the numerical applications do not take advantage of any
tailoring. The advantages that numerical applications can
gain from the techniques used in tailoring are currently
being investigated, and while it looks promising that they
can benefit from it also, the exact figures are not yet known
so have been left out of the current work.

From figure 3 it can be seen that the CPU needed in the
tailored scenario is slightly higher than the CPU needed in
the default baseline scenario. By using request
discrimination we are reducing the demand of the Web
applications by 10%, but we experience a hit on the CPU
due to the compression technique. In the worst case for our
workload it amounts to an extra 2068 Mhz, which is
equivalent to 31% of a single server’s CPU capacity.

Figure 3. The extra amount of CPU used in the tailored setup

compared to that used in the default

The next graphic in figure 4 shows us the other side of
the coin as we can see the large difference between the
memory requirements of the tailored environment and the
default one over the time of the simulation. For the

memory, the tailored environment requires a considerable
amount less since it is able to squeeze more out of the
memory available to it when it uses compression. We have
essentially traded some of our excess CPU power for extra
memory when we used the tailoring.

Figure 4. The amount of memory used in the default setup versus

that used with tailoring

The big advantage that we gain by using tailoring can be
summed up in figure 5, where we show the difference in
the amount of servers required to satisfy the workload over
time. Over the whole simulation time the tailored setup
never requires more servers than the default setup. At the
lowest points of demand our tailored environment is able to
get by with a single server, whereas at those points the
standard environment needs three. This could be used to
achieve a saving in the cost of running the website, and a
reduction to its carbon footprint, especially if the resources
are being contracted dynamically based on demand.

Figure 4. The difference in the amount of nodes needed for the

default setup versus those needed with tailoring

Even if the website is not dynamically obtaining servers
to deal with the load and has a static set of servers in-
house, the tailored setup would allow them to use 20% less
servers, since the maximum amount of servers needed by
the tailored setup to satisfy the workload is 4 whereas the
corresponding value for that of the default setup is 5. This
represents a significant saving in the hardware needs, and
when put in this context, the default setup appears to be

 7

suffering from over-provisioning. There is a huge
environmental impact by being able to turn off unneeded
servers so this is an important step in making Data centers
“greener”.

During the simulation we also recorded the amount of
migrations that were needed to achieve the placements. The
figures for the default baseline scenario and the tailored
one were 27 and 192 respectively. While the difference in
these two figures appears large, since the experiment had a
simulated time of one week, it should not pose much
problems. It works out that there would be just over one
migration per hour using the tailored set up. We are
currently doing work in our group to research ways of
having transparent migrations for users using the
techniques in [1] which may be of help in this process.

3.3.4 Bigger Workloads

To establish how the tailored and default scenarios cope
with larger workloads, we multiplied our previous load by
a factor of four and reran the simulation. Under this load,
which has a set of 48 applications looking for resources in
the same way as the previous simulation, the differences
between the default setup and the tailored one become even
more pronounced. Figure 5 shows that the tailored
environment requires fewer servers throughout the entire
simulated time of this heavier load. The maximum amount
of servers required by the default and tailored setup are 18
and 14 respectively, which would allow a saving of just
over 20%. The number of migrations in both cases
increased by a factor just greater than 4.

Figure 5. The amount of nodes needed for the default setup versus

those needed with tailoring

4. Related Work
The placement problem itself is out of the scope of our

work but the techniques described in this paper can be
helpful to any placement algorithm, by relaxing one of the
hardest constraints they have to deal with: the system
capacity. Existing dynamic application placement
proposals provide automation mechanisms by which
resource allocations may be continuously adjusted to the
changing workload. Previous work focuses on different

goals, such as maximizing resource utilization [11] and
allocating resources to applications according to their
service level goals [21, 6]. Our proposal could apply to and
improve any of those. Space does not permit a full
discussion of the various types of virtualization and their
relative merits here; the reader is referred instead to
[16,8,2]. The dynamic allocation of server resources to
applications has been extensively studied [4,6,11,13,22],
however any of these proposals can go beyond
virtualization and could be beneficiaries of the proposals
presented in this paper. Another important issue is the
problematic consolidation of multi-tier applications
considered in [18] that can be complementary to our
proposal. Also of great importance is the topic considered
in [17], regarding the power-efficient management of
enterprise workloads which exploits the heterogeneity of
the platforms. Our proposals could be included in the
analytical prediction layer proposed by the authors. Finally
let us remark that our proposals could be combined with
power-saving techniques at the lowest level such as
dynamic voltage scaling and frequency scaling [7,14,24].
In a recent work [12], the authors use frequency scaling in
a scheme that trades off web application performance and
power usage while coordinating multiple autonomic
managers. In this case the proposals of this article could be
included in the utility function that they are using.

5. Conclusions
In this paper we demonstrate how consolidation with

energy efficiency goals still has a long way to do beyond
the use of virtualization. In this work, we identify new
opportunities to improve the energy efficiency of systems,
reducing the resources required, without negatively
impacting the performance or user satisfaction. The
obtained results show that the combined use of memory
compression and request discrimination can dramatically
boost the energy savings in a data center. Our interest as a
group involves creating power-aware middleware to
contribute to building energy-efficient data centers. The
increased awareness of green issues is simply accelerating
improvements in efficiency that any data center should
have been implementing in the near future anyway.
Somehow, the next generation of computing systems must
achieve significantly lower power needs, higher
performance/watt ratio, and higher reliability than ever
before.

6. Future Work
We would like to extend our work to consider other

techniques that could be added in terms of availability such
as self-healing techniques [1] and therefore take better
advantage of the resources available. We are already
working on the implementation of a prototype system that
applies the techniques described in this paper. We will also

 8

extend the tailoring techniques further than just web
applications and take numerical applications into account.
The advantages that numerical applications can gain from
the technique used to compress memory are currently being
investigated in our group and it looks promising that they
can benefit from it. Many systems kill jobs after an
estimated time by the user (indicated in the user-provided
job script) has elapsed and it is a well-documented fact that
user-provided runtime estimates are very often inaccurate
[31]. In this case we are working to find a way of using
discrimination techniques to detect and filter jobs that have
no chance of completing successfully.

7. References
[1] J. Alonso, L. Silva, A. Andrzejak, P. Silva and J. Torres
“High-Availability Grid Services through the use of Virtualized
Clustering“. The 8th IEEE/ACM Int.l Conf. on Grid Computing
(GRID 2007). September 19-21, 2007, Austin, Texas, USA.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization” in Symposium on Operating Systems Principles
(SOSP), Bolton Landing, NY, 2003
[3] V.Beltran, J. Torres and E. Ayguade “Improving Disk
Bandwidth-Bound Applications Through Main Memory
Compression” MEDEA Workshop MEmory performance:
DEaling with Applications, systems and architecture. Brasov,
Romania. In conjunction with PACT 2007 Conf. Sept. 2007.
[4] N. Bobroff, A. Kochut, and K. Beatty, “Dynamic
placement of virtual machines for managing SLA violations,” in
Integrated Network Management, Munich, Germany, May 2007.
[5] BREIN Project. http://www.eu-brein.com/
[6] D. Carrera, M. Steinder, I. Whalley, J. Torres and E.
Ayguadé. Utility-based Placement of Dynamic Web Applications
with Fairness Goals. Submitted to IEEE/IFIP Network Operations
and Management Symposium (NOMS 2008).
[7] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle, “Managing energy and server resources in
hosting centers,” in ACM Symposium on Operating Systems
Principles, 2001.
[8] R. Figueiredo, P. Dinda, and J. Fortes, “A case for grid
computing on virtual machines” in International Conference on
Distributed Computing, Providence, RI, May 2003.
[9] Green Grid Con.sortium , http://www.thegreengrid.org/
[10] Hepp, M., D. Bachlechner, and K. Siorpaes. Harvesting
Wiki Consensus - Using Wikipedia Entries as Ontology Elements.
Proceedings of the ESWC2006, Budva, Montenegro, 2006.
[11] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.
Steinder, M. Sviridenko, A. Tantawi, “Dynamic placement for
clustered web applications” In WWW Conf., Scotland (2006)
[12] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro,
and F. R. an C. Lefurgy, “Coordinating multiple autonomic
managers to achieve specified power-performance tradeoffs,” in
IEEE Fourth Int. Conf. on Autonomic Computing, Jun. 2007.
[13] T. Kimbrel, M. Steinder, M. Sviridenko, A. Tantawi,
”Dynamic application placement under service and memory
constraints”. In International Workshop on Efficient and
Experimental Algorithms, Santorini Island, Greece (2005)

[14] B. Khargharia, S. Hariri, and M. S. Youssif, “Autonomic
power and performance management for computing systems,” in
IEEE Int. Conference on Autonomic Computing, June 2006.
[15] J. Koomey. “Estimating Regional power consumption by
servers: A technical note" Dec 5, 2007. Available at:
http://www.amd.com/us-en/assets/content_type/
DownloadableAssets/Koomey_Study-v7.pdf
[16] S. Nanda and T. Chiueh, “A survey of virtualization
technologies” Stony Brook University, Tech. Rep. 179, 2005.
[17] R. Nathuji, C. Isci, E. Gorbatov. “Exploiting Platform
Heterogeneity for Power Efficient Data Centers”. In IEEE Fourth
International Conference on Autonomic Computing, June. 2007.
[18] P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, K. Salem, and K. Shin. “Adaptive control of
virtualized resources in utility computing environments”. In Proc.
European Conference on Computer Systems (EuroSys'07), 2007.
[19] N. Poggi, J.L. Berral, T. Moreno, R. Gavaldà and J. Torres.
“Automatic Detection and Banning of Content Stealing Bots for
E-commerce”. In Workshop on Machine Learning in Adversarial
Environments for Computer Security (NIPS 2007).British
Columbia, Canada. Dec. 2007
[20] N.Poggi, T. Moreno, J. Berral, R. Gavaldà, J. Torres. “Web
Customer Modeling for Automated Session Prioritization on High
Traffic Sites”. In 11th International Conference on User
Modeling. Corfu, Greece, June, 2007.
[21] M. Steinder, I. Whalley, D. Carrera, I. Gaweda and D.
Chess. “Server virtualization in autonomic management of
heterogeneous workloads”. In 10th IFIP/IEEE International
Symposium on Integrated Management (IM 2007), May 2007.
[22] C.-H. Tsai, K. G. shin, J. Reumann, and S. Singhal,
“Online web cluster capacity estimation and its application to
energy conservation,” IEEE Transactional on Parallel and
distributed Systems, vol. 18, no. 7, 2007.
[23] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, Q.
Wang. ”Appliance-Based Autonomic Provisioning Framework for
Virtualized Outsourcing Data Center”. in IEEE Fourth
International Conference on Autonomic Computing, June 2007.
[24] M. Wang, N. Kandasamy, A. Guea, and M. Kam,
“Adaptive performance control of computing systems via
distributed cooperative control: Application to power
management in computing clusters,” IEEE 3th International
Conference on Autonomic Computing, June 2006.
[25] “WebSphere eXtended Deployment,” http://www-
306.ibm.com/software/webservers/appserv/extend/
[26] Standard Performance Evaluation Corporation.
SPECweb2005. http://www.spec.org/web2005/
[27] “Usage of Virtualization Technology at Small and Midsize
Businesses”, Computerworld White Paper, October 2007.
[28] The Green500 list. http://www.green500.org/
[29] (BLAST), The National Center for Biotechnology
Information. http://www.ncbi.nlm.nih.gov/blast/
[30] ImageMagick(TM), http://www.imagemagick.org/
[31] C.B. Lee, A. Snavely. On the User–Scheduler Dialogue:
Studies of User-Provided Runtime Estimates and Utility
Functions International Journal of High Performance Computing
Applications, Vol. 20, No. 4, 495-506 (2006).
[32] BCN Placement Simulator. Available: http://
PlacementSimulator.energy-efficient-computing.org/

