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Abstract 

In this paper we introduce a new approach to the 
consolidation strategy of a data center that allows an 
important reduction in the amount of active nodes required 
to process a heterogeneous workload without degrading 
the offered service level. This article reflects and 
demonstrates that consolidation of dynamic workloads 
does not end with virtualization. If energy-efficiency is 
pursued, the workloads can be consolidated even more 
using two techniques, memory compression and request 
discrimination, which were separately studied and 
validated in previous work and  is now to be combined in a 
joint effort. We evaluate the approach using a 
representative workload scenario composed of numerical 
applications and a real workload obtained from a top 
national travel website. Our results indicate that an 
important improvement can be achieved using 20% less 
servers to do the same work. We believe that this serves as 
an illustrative example of a new way of management: 
tailoring the resources to meet high level energy efficiency 
goals. 

 
1. Introduction 
Companies are now focusing more attention than ever on 
the need to improve energy efficiency. Up to now, the 
notion of "performance" has been much related with 
"speed". This required datacenters and supercomputing 
centers to consume huge amounts of electrical power and 
produce a big amount of heat that requires expensive 
cooling facilities. Besides the cost of energy, a new 
challenge for them is the increasing pressure to reduce the 
carbon footprint. Since many UK and EU regulations and 
campaigns demand greener businesses, a cap-and-trade 
system for carbon credits is to be introduced in 2010. 
Commercial electricity consumption is a major factor in 
rising atmospheric CO2 levels and data centres are a 
significant part of the problem. Currently energy costs are 
rising and Data Center’s equipment are stressing the power 
and cooling infrastructure.  However, the main issue is not 
the current amount of data-centre emissions, but the fact 
that data-centre emissions are increasing faster than other 
carbon emissions [15]. For this reason nowadays there is a 
big interest in “Green” data and supercomputer centers 
[9,28]. 

In this scenario, the research community is being 
challenged to rethink data center strategies, adding energy 
efficiency to a list of critical operating parameters that 
already includes service ability, reliability and 
performance. 
A large variety of power-saving proposals have been 
presented in the literature such as dynamic voltage scaling 
and frequency scaling [14, 23]. However, some authors 
[12, 7] have argued that workload consolidation and 
powering off spare servers is a good effective way to save 
power and cooling energy.  The low average utilization of 
servers is a well known cost concern in data center 
management.  It has only been a short while since “One 
application – one server” was the dominant paradigm. This 
situation clearly implies server sprawl where the servers are 
underutilized.  Data centers started to solve this by packing 
through consolidation to reduce the number of machines 
required. Server consolidation implies combining 
workloads from separate machines and different 
applications into a smaller number of systems and has 
become very popular following the advances in 
virtualization technologies [16].  This solves some 
interesting challenges; less hardware is required, less 
electrical consumption is needed for server power and 
cooling and less physical space is required.   This is a 
widely adopted strategy used by companies [27] to increase 
the efficiency in managing their server environment and is 
assumed to maximize the utilization of their existing 
resources. As we will discuss further in this paper, we 
should consider new techniques complementary to 
consolidation to dramatically reduce the energy 
consumption and further reduce the resources required. 
Request discrimination is introduced to identify and reject 
those requests that consume system resources but have no 
value for an application (e.g. requests coming from web 
crawlers created by competitor businesses for spying 
purposes). We will also consider another technique, 
memory compression used to convert CPU power into 
extra memory capacity to overcome system underutilization 
scenarios caused by memory constraints. We study the use 
of these techniques by describing a representative scenario 
composed of a realistic heterogeneous workload. The 
techniques described here reduce the number of nodes 
necessary to meet a certain service level criteria. The main 
contribution of this article is to reflect and demonstrate that 
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the consolidation through virtualization of heterogeneous 
workloads is not enough to save energy, and we will 
present ways of rescuing resources through reducing the 
resources wasted. The rest of the paper is organized as 
follows. Section 2 describes the basics of dynamic resource 
management and the techniques that we applied in our 
work. Section 3 discusses our studies and obtained results. 
In Section 4 we study the related work found in the 
literature. Finally, some conclusions and future work are 
discussed in sections 5 and 6. 

 
2. Consolidated environment 
2.1 Managing a consolidated and virtualized 

environment 
Consolidation and virtualization can be combined to 

reduce the management complexity of large data centers as 
well as to increase the energy efficiency of such a system. 
But even in a scenario where the resources are consolidated 
and virtualized, utilizing all the capacity of the components 
that are switched on (and consuming power) is not always 
easy. Deciding a collocation of a set of applications in a 
node to perfectly fit and exploit all the resources of the 
system is a hard problem to solve, especially when tenths 
or even hundreds of nodes and applications can be found in 
a data center. Furthermore, the fact that the demand 
associated with each resource of the system for a given 
application may not be related in any way to its demand for 
other resources (i.e. an application with a large memory 
footprint may not be very demanding in terms of CPU 
power) makes it become a structural problem that requires 
some constraints to be relaxed if we want to overcome it. 
The techniques proposed in this paper are studied in the 
context of a shared data center running a set of applications 
and being operated by an automatic service management 
middleware such as that described in [21,25] but other 
approaches could be considered. The management 
middleware monitors the actual service level offered to 
each running application and dynamically changes the 
configuration of the system to make the applications meet 
their goals. In particular, the system has to decide in what 
nodes these instances are going to be placed: this is what is 
known as the placement problem.  

The placement problem is to find a placement of 
applications on servers, known to be NP-hard [11,6] and 
heuristics must be used to solve it. Given a certain 
workload, changing the allocated CPU power to an 
application makes a significant difference in the service 
level offered by that application. But changing the amount 
of memory allocated to an application results in an even 
higher impact, because the application can be placed or not, 
depending on whether the amount of memory reserved to 
run it is enough or not to place it. This leads to a scenario 
where the placement problem can be represented as two 
different problems: placing applications following memory 

constraints and spreading CPU resources amongst the 
placed instances. The objective of our work is not to focus 
on solving the placement problem but to introduce a new 
degree of freedom into it to allow the system find a new set 
of application placements that offer the same service level 
to each application but require different resource 
allocations. This objective is achieved by relaxing the 
allocation constraints, and by relaxing the hardest 
constraint in the system: the available physical resources in 
each node of the data center. 

For the purpose of our work, we will assume that the 
data center uses virtualization technology [2] to control the 
resources allocated to each application by running each 
instance inside a virtual machine container. In the scope of 
this paper we’ll use a simple instance placement algorithm 
to illustrate the benefits of our techniques, but any other 
approach could be considered. In order to better define the 
placement scenario, it can be assumed that the system is 
able to derive the relation between resource allocation and 
obtained service level for each application in the system, as 
is reported in [21]. 

2.2 Recycling through resource transformation 

After virtualizing a system, some resources may still not 
be used by any application. The demand associated with 
each resource of the system for a given application may not 
be related in any way to the demand for other resources 
(i.e. an application with a large memory footprint may not 
be very demanding in terms of CPU power), which can 
potentially lead to an underutilization of some resources in 
the system. To illustrate this situation we will show a usual 
placement problem: some applications could be placed on a 
node in terms of CPU power (they would meet their 
performance goals), but the memory capacity of the system 
makes it impossible to place all the applications together. 
As a result, one extra node must be used to place one of the 
applications, and both of the nodes remain underutilized in 
terms of CPU. 

Memory compression is a widely studied topic that can 
be very helpful for the placement problem. It allows the 
system to increase the density of the placement (number of 
applications placed on a node) and better exploit the 
resources of the system. This process can be understood as 
a resource transformation: CPU cycles are converted into 
extra memory. The amount of extra memory produced 
using this technique can potentially go beyond 
consolidation through virtualization in two aspects: firstly, 
allowing the placement of an extra application that did not 
fit in a node before, therefore reducing note 
underutilization; and secondly, increasing the performance 
of a placed application that, with a given amount of 
memory, can still run but at a fraction of the maximum 
achievable performance (i.e. producing a big volume of 
swapping activity). 
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Some of our recent work, described in [3], is focused on 
revisiting the memory compression topic by targeting 
advanced hardware architectures (current multiprocessors 
and multi-core technologies such as CELL and Niagara 
[3]). This study concludes that memory compression can be 
carried out without observing a significant performance 
impact in many commercial applications (the study is 
performed over the SPECWeb2005 [26] application).  The 
relation between the CPU power dedicated to compress 
memory and the memory gain obtained for three different 
levels of memory compressibility is represented in [3]. 
Obviously, this relation is always defined by the level of 
memory compression achievable given a set of 
applications.  From the point of view of the applications, 
the overhead produced by memory compression techniques 
is negligible because although accessing compressed data 
is slower than accessing regular memory, it is still faster 
than accessing a standard SCSI disk. This means that the 
reduction in swapping by adding compressed memory as 
well as caching more data in the compressed memory can 
still result in a performance improvement for most 
applications. 

 

2.3 Reduction through discrimination 

A fraction of the resources are wasted on work that 
yields no added value for the application or the company 
running it: consider a webserver for an e-commerce site, 
and the amount of work performed for customers that will 
not buy. Or an even greater problem are clients that request 
work that can be harmful to the system: consider requests 
to this webserver coming from denial-of-service attacks, or 
the traffic generated by malicious bots or requests coming 
from web crawlers created by competitor businesses with 
spying purposes. Any potentially harmful requests that can 
be detected should be banned as soon as possible. 

Let us comment on the work in [19], which addresses 
the problem of detecting malicious bots for the purpose of 
banning them. The case study in these works is a national 
online travel agency that works as an electronic 
intermediary between customers and service providers 
(such as airline companies). More precisely, in [19,20] and 
later experiments we have used web traffic logs from 
different periods of the year, ranging from one day to a 
week of traffic, with up to 3,7 million transactions. Each 
transaction is a particular request to the web site (such as 
requesting a page download, possibly including many 
database searches). Transactions are grouped into user 
sessions, with an average length of about 8 transactions per 
session for non-buying sessions, and about 18 transactions 
per session for sessions that end in a purchase. About 6.7% 
of transactions belong to sessions which will end in 
purchase. The problem tackled in [19] is that of detecting 
stealing bots in e-commerce applications. Content stealing 
on the web is becoming a serious concern for information 

and e-commerce websites. In the practices known as web 
fetching or web scraping [10], a stealer Bot simulates a 
human web user to extract desired content off the victim’s 
website. Not only that, but in a B2B scenario, the victim 
incurs the costs of searching the provider’s web for a 
supposed “customer” that will never buy, and loses the real 
customers who will instead buy via the stealer’s web.  

The work in [19] investigated whether it was possible to 
identify with reasonable certainty bots accessing a web site 
for automated banning so that the system could stop the 
corresponding session and free the allocated resources. In 
the mentioned online travel agent website, [19] concluded 
that around 15% to 20% of the traffic corresponds to bots 
other than simple crawlers. Note that a feature of stealer 
bots is the large amount of search requests, hence this large 
traffic figure. Applying machine learning techniques, the 
authors were able to detect around 10%-12% of the total 
traffic as bots with a low % of “false alarms” and 
negligible overhead at runtime. This percentage of traffic 
could be banned in the real scenario, even when the system 
is not overloaded, since it is actually harmful to the 
company’s interests to serve them. While the interest of the 
authors in [19] is leveraging revenue loss from the spurious 
transactions, it is easy to see this technique as a way to 
reduce the allocated resources: If we expect that we could 
ban 10%-12% of the incoming traffic, we could reduce the 
resources assigned to the application by a similar 
percentage when deploying it. 

In any case, a key point is finding the relation between 
load reduction and resource reduction. The experiments in 
some of our EU-funded projects [5], where we have 
researched the dynamic management of resources, let us 
conclude that there is essentially a linear relation among 
load volume and CPU usage. That is, if we reduce the 
number of requests by 10% or 15%, the CPU requirements 
will be reduced by at least 10% or 15%. The reduction will 
probably be larger if the transactions we discard are 
especially heavy ones (which is the case for stealing bots). 
We cannot at this moment, make similar claims for other 
resources, such as memory, which we are still 
investigating. For this reason we center our work only on 
CPU even though we believe that we will be able to extend 
the conclusions to other resources soon.  
 

3. Experiments 
In this section we evaluate our proposal. First we will 

demonstrate the waste of resources using the state-of-the-
art automatic management middleware, considering only a 
small set of web applications in order to ease the 
explanation of the idea. Later we will demonstrate the 
impact of the proposal using a simulation that reproduces a 
heterogeneous workload scenario. 
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3.1 Waste of resources 
In order to demonstrate that the current state of 

virtualization is wasting resources, we will consider a set of 
4 different web applications. The characteristics of each 
application are described in table 1. Neither allocation 
restrictions nor collocation restrictions are defined, but 
placement is still subject to resource constraints, such as 
the node memory and CPU capacity.   

 

 App 1 App 2 App 3 App 4 

Minimum 
Memory  

2300 MB 1300 MB 1100 MB 1000 MB 

Maximum 
CPU required  

2200Mhz 2000 Mhz 2000 Mhz 1900 Mhz 
 

Table 1. Memory and CPU required by the Applications 
 

We consider that each server has four 2.2GHz CPU and 
4GB of memory (based on an IBM JS21 blade). We 
assume that the virtualization overhead is 1GB of memory 
and 1 CPU. This assumption is based on our previous 
experience [5]. Table 2 summarizes the specifications of 
each node. Notice that application 1 can not be placed 
together with any other application because of the memory 
constraints. Applications 2, 3 and 4 can be collocated, but 
only two of them can be placed together in each node. 
Table 1 only indicates the maximum CPU required (spike) 
for each application over time to meet its service level 
goals.  That is, the maximum value for the minimum 
amount of CPU power that must be allocated to each 
application if its service level goal is to be met. There is no 
overloading at any point during the experiment (the 
aggregated CPU power can satisfy the requirement of all 
applications over the time). This placement leads to a 
situation where the three nodes are clearly underutilized in 
terms of CPU since the maximum amount of CPU required 
at any point during the execution is 8100 Mhz while we 
have a total of 19800 Mhz at our disposal from the 3 
servers.  

 
No virtualization Virtualization overhead 

CPU 
capacity 

Memory 
capacity 

Effective CPU 
capacity 

Effective mem. 
capacity 

4x  2.2Ghz 4096MB 3x  2.2Ghz 
(6.6 Ghz) 3072 MB 

 
Table 2. Memory and CPU capacity of each node before and after 

considering the virtualization overhead. 
 

3.2 Tailoring of resources 

3.2.1 Baseline placement 

In this section we describe what a modern management 
middleware would be expected to do in the scenario 
described above. As we said before, application 1 can not 
be placed together with any other of the other applications 
because of its memory requirements. Given that the CPU 

demand of application 1 can be satisfied by one single 
node, we assume that this application would be placed in 
one node for the whole length of the experiment. The other 
applications must be placed in the two remaining nodes. 
Given that all three applications don’t fit in one single node 
due to the memory constraint, two of them will have to be 
placed together while the other application will be alone on 
one node. Thus, the placement algorithm should decide at 
this point what two applications are going to be placed 
together. For this experiment we decide to pick application 
2 and 3 to be deployed on node 2, and application 4 to be 
placed in node 1. Notice that other choices are possible but 
that the result would be analogous to that presented here.  

 

3.2.2 Adding Tailoring Resources  

At this point, we introduce the use of memory 
compression to increase the memory capacity of a node on 
demand. The memory, as discussed in Section 2.2, is 
produced at a cost in terms of CPU power. Notice that in 
the scenario described in section 3.1, memory constraints 
lead to a situation where the three nodes are clearly 
underutilized in terms of CPU power. Looking at the data 
provided in Section 2.2 (which is based on real 
experiments conducted with realistic applications on top of 
an IBM JS21 blade server) one can observe how, 
depending on the compression rate achievable for a given 
set of applications placed in a node, a relation can be 
established between the CPU power required to compress 
memory and the increase in available memory observed. In 
the scope of this example, we assume an achievable 
compression factor of 47%, and will use an increased 
memory capacity for each active node of 6GB at a cost of 
1320MHz of CPU power. With the new constraints, a new 
range of possible placements is opened up, including the 
option of having all four applications placed together on 
one single node if the amount of CPU power required can 
be satisfied by that single node.  When the aggregated CPU 
demand exceeds the capacity of a single node an 
application is migrated to a second node which is switched 
on for this purpose. If at a given point the aggregated CPU 
demand for a set of applications can be satisfied again with 
one single node, all these applications are placed in the 
same node again. More details on this can be found in the 
report [32]. 

Regarding the CPU, we make use of the request 
discrimination technique described earlier in section 2.3. 
With the help of machine learning it is possible to 
determine the characteristics of requests that are of no 
benefit to the company running the service; for example 
Bots. These have been estimated to account for 15% to 
20% of all web traffic so the filtering out of these can 
reduce the load by a significant amount. We assume that 
we can filter out 10% of all the web traffic, based on the 
figures that the authors of [19] achieved in their work. 
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There is a direct linear correlation between the amounts of 
CPU required to process requests, so if we reduce the 
number of requests by 10%, we are effectively reducing the 
amount of CPU needed by the same amount [5]. 
 
Application Memory CPU 

(Mhz) 
Running 
Time 

# of runs 
per day 

BLAST1 550 MB 4400 15 min 24 
BLAST2 550 MB 4400 30 min 12 

ImageMagick1 750 MB 2200 127 min 1 
ImageMagick2 750 MB 2200 100 min 2 

 
Table 3. Requirements of the Numerical Applications. 

 
3.3 Heterogeneous workload 

3.3.1 Workload Description 

To generate the heterogeneous workload we modify and 
extend the previous workload, described in table 1, by 
creating a scenario in which we consider a total of 12 
applications. The first set of 4 are designated as "Web" 
applications, and have the same memory and CPU 
requirements as defined in table 1, but are scheduled to run 
at times that conform to the workload of a travel agency 
website during the high-season. There are clearly visible 
patterns in the load over the day and week, containing 
spikes during the day, troughs at night and generally lower 
loads at the weekend. The next set of 4 applications are 
also "Web" applications but are scheduled to run 
throughout the whole simulation. They use the same 
memory as before but have a variable CPU demand that is 
roughly in accordance with the demand on the travel 
agency website. Only the CPU is varied since it has been 
discovered through other work [5] that there is a highly 
linear correlation between the CPU and the workload level, 
whereas the same does not hold true for the memory.  

 
Figure 1. The amount of CPU used over time in the default setup 

 
The last set of 4 applications are numerical applications 

which do not display the same workload characteristics as 
the previous ones. We have taken two specific, but 
representative, numerical applications for this simulation; 
BLAST[29] is a bioinformatics application which generally 

has short job running times (in the order of 15 to 30 
minutes), and ImageMagick [30] is an image rendering 
application which has longer job running times (in the 
order of 120 minutes). The numerical applications are 
considered to have static CPU and memory demands when 
they are running and we have scheduled them so that the 
short running jobs arrive every hour or two and the long 
running jobs only arrive once or twice a day. The exact 
needs of each numerical application can be seen in Table 3. 

3.3.2 Baseline Placement 

After generating the heterogeneous workload above, we 
first ran the simulation with the default baseline placement 
algorithm. The workload pattern of the travel website is 
easy to see in figure 1, where we show the amount of CPU 
used over a simulated time of one week. 

 

 
 

 
Figure 2. The percentage of the allocated (a) memory capacity,  

and (b) CPU, being used under the baseline placement 
 

While we are benefiting from consolidation and 
virtualization, reducing the number of servers we need to 
run the applications when compared with the “one 
application – one server” paradigm, there is still 
considerable wastage in the system. We can measure the 
exact amount of resources being wasted at each moment in 
time by subtracting the total load from the sum of the 
capacities of each server allocated to us during that 
moment in time. For example, if we have 2 servers 
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allocated to us and they both have 1GB of memory free, 
this means that we are wasting 2GB of memory in total. 
For 2 servers this means that we are only using 66% of the 
memory available to us since the effective memory 
capacity available to each server after virtualization is 3072 
MB. Conversely, it also means that we are wasting 33% of 
that resource. Figures 2 show the percentage of the 
allocated resources that are being used/wasted over time 
using the default baseline placement, when considering 
CPU and memory respectively. The graphics show that 
there is very little memory being wasted, but the CPU 
appears to be highly underutilized. It suggests that the 
memory is acting as the largest constraint when we are 
placing applications on the servers. 

3.3.3 Tailored Placement 

In the next stage of our experiment we used the same 
workload with a simple demand based placement algorithm 
which can make use of the compression and request 
discrimination techniques. Note that during this simulation 
the numerical applications do not take advantage of any 
tailoring. The advantages that numerical applications can 
gain from the techniques used in tailoring are currently 
being investigated, and while it looks promising that they 
can benefit from it also, the exact figures are not yet known 
so have been left out of the current work.  

 

From figure 3 it can be seen that the CPU needed in the 
tailored scenario is slightly higher than the CPU needed in 
the default baseline scenario. By using request 
discrimination we are reducing the demand of the Web 
applications by 10%, but we experience a hit on the CPU 
due to the compression technique.  In the worst case for our 
workload it amounts to an extra 2068 Mhz, which is 
equivalent to 31% of a single server’s CPU capacity.  
 

 
Figure 3. The extra amount of CPU used in the tailored setup 

compared to that used in the default 
 

The next graphic in figure 4 shows us the other side of 
the coin as we can see the large difference between the 
memory requirements of the tailored environment and the 
default one over the time of the simulation. For the 

memory, the tailored environment requires a considerable 
amount less since it is able to squeeze more out of the 
memory available to it when it uses compression. We have 
essentially traded some of our excess CPU power for extra 
memory when we used the tailoring. 

 
Figure 4. The amount of memory used in the default setup versus 

that used with tailoring 
 

The big advantage that we gain by using tailoring can be 
summed up in figure 5, where we show the difference in 
the amount of servers required to satisfy the workload over 
time. Over the whole simulation time the tailored setup 
never requires more servers than the default setup.  At the 
lowest points of demand our tailored environment is able to 
get by with a single server, whereas at those points the 
standard environment needs three. This could be used to 
achieve a saving in the cost of running the website, and a 
reduction to its carbon footprint, especially if the resources 
are being contracted dynamically based on demand. 
 

 
Figure 4. The difference in the amount of nodes needed for the 

default setup versus those needed with tailoring 
 

Even if the website is not dynamically obtaining servers 
to deal with the load and has a static set of servers in-
house, the tailored setup would allow them to use 20% less 
servers, since the maximum amount of servers needed by 
the tailored setup to satisfy the workload is 4 whereas the 
corresponding value for that of the default setup is 5. This 
represents a significant saving in the hardware needs, and 
when put in this context, the default setup appears to be 
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suffering from over-provisioning. There is a huge 
environmental impact by being able to turn off unneeded 
servers so this is an important step in making Data centers 
“greener”. 

During the simulation we also recorded the amount of 
migrations that were needed to achieve the placements. The 
figures for the default baseline scenario and the tailored 
one were 27 and 192 respectively. While the difference in 
these two figures appears large, since the experiment had a 
simulated time of one week, it should not pose much 
problems. It works out that there would be just over one 
migration per hour using the tailored set up. We are 
currently doing work in our group to research ways of 
having transparent migrations for users using the 
techniques in [1] which may be of help in this process. 

3.3.4 Bigger Workloads 

To establish how the tailored and default scenarios cope 
with larger workloads, we multiplied our previous load by 
a factor of four and reran the simulation. Under this load, 
which has a set of 48 applications looking for resources in 
the same way as the previous simulation, the differences 
between the default setup and the tailored one become even 
more pronounced. Figure 5 shows that the tailored 
environment requires fewer servers throughout the entire 
simulated time of this heavier load. The maximum amount 
of servers required by the default and tailored setup are 18 
and 14 respectively, which would allow a saving of just 
over 20%. The number of migrations in both cases 
increased by a factor just greater than 4. 

 

 
Figure 5. The amount of nodes needed for the default setup versus 

those needed with tailoring 
 

4. Related Work 
The placement problem itself is out of the scope of our 

work but the techniques described in this paper can be 
helpful to any placement algorithm, by relaxing one of the 
hardest constraints they have to deal with: the system 
capacity. Existing dynamic application placement 
proposals provide automation mechanisms by which 
resource allocations may be continuously adjusted to the 
changing workload.  Previous work focuses on different 

goals, such as maximizing resource utilization [11] and 
allocating resources to applications according to their 
service level goals [21, 6]. Our proposal could apply to and 
improve any of those.  Space does not permit a full 
discussion of the various types of virtualization and their 
relative merits here; the reader is referred instead to 
[16,8,2]. The dynamic allocation of server resources to 
applications has been extensively studied [4,6,11,13,22], 
however any of these proposals can go beyond 
virtualization and could be beneficiaries of the proposals 
presented in this paper. Another important issue is the 
problematic consolidation of multi-tier applications 
considered in [18] that can be complementary to our 
proposal. Also of great importance is the topic considered 
in [17], regarding the power-efficient management of 
enterprise workloads which exploits the heterogeneity of 
the platforms. Our proposals could be included in the 
analytical prediction layer proposed by the authors. Finally 
let us remark that our proposals could be combined with 
power-saving techniques at the lowest level such as 
dynamic voltage scaling and frequency scaling [7,14,24]. 
In a recent work [12], the authors use frequency scaling in 
a scheme that trades off web application performance and 
power usage while coordinating multiple autonomic 
managers. In this case the proposals of this article could be 
included in the utility function that they are using.  

5. Conclusions 
In this paper we demonstrate how consolidation with 

energy efficiency goals still has a long way to do beyond 
the use of virtualization. In this work, we identify new 
opportunities to improve the energy efficiency of systems, 
reducing the resources required, without negatively 
impacting the performance or user satisfaction. The 
obtained results show that the combined use of memory 
compression and request discrimination can dramatically 
boost the energy savings in a data center. Our interest as a 
group involves creating power-aware middleware to 
contribute to building energy-efficient data centers. The 
increased awareness of green issues is simply accelerating 
improvements in efficiency that any data center should 
have been implementing in the near future anyway. 
Somehow, the next generation of computing systems must 
achieve significantly lower power needs, higher 
performance/watt ratio, and higher reliability than ever 
before. 

6. Future Work  
We would like to extend our work to consider other 

techniques that could be added in terms of availability such 
as self-healing techniques [1] and therefore take better 
advantage of the resources available. We are already 
working on the implementation of a prototype system that 
applies the techniques described in this paper. We will also 
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extend the tailoring techniques further than just web 
applications and take numerical applications into account. 
The advantages that numerical applications can gain from 
the technique used to compress memory are currently being 
investigated in our group and it looks promising that they 
can benefit from it. Many systems kill jobs after an 
estimated time by the user (indicated in the user-provided 
job script) has elapsed and it is a well-documented fact that 
user-provided runtime estimates are very often inaccurate 
[31]. In this case we are working to find a way of using 
discrimination techniques to detect and filter jobs that have 
no chance of completing successfully. 
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