
Session-Based Adaptive Overload Control for Secure Dynamic Web
Applications

Jordi Guitart, David Carrera, Vicenç Beltran, Jordi Torres and Eduard Ayguadé
European Center for Parallelism of Barcelona (CEPBA)

Computer Architecture Department - Technical University of Catalonia
C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034 Barcelona (Spain)

{jguitart, dcarrera, vbeltran, torres, eduard}@ac.upc.edu

Abstract

As dynamic web content and security capabilities

are becoming popular in current web sites, the
performance demand on application servers that host
the sites is increasing, leading sometimes these servers
to overload. As a result, response times may grow to
unacceptable levels and the server may saturate or
even crash. In this paper we present a session-based
adaptive overload control mechanism based on SSL
(Secure Socket Layer) connections differentiation and
admission control. The SSL connections differentiation
is a key factor because the cost of establishing a new
SSL connection is much greater than establishing a
resumed SSL connection (it reuses an existing SSL
session on server). Considering this big difference, we
have implemented an admission control algorithm that
prioritizes the resumed SSL connections to maximize
performance on session-based environments and limits
dynamically the number of new SSL connections
accepted depending on the available resources and the
current number of connections in the system to avoid
server overload. In order to allow the differentiation of
resumed SSL connections from new SSL connections
we propose a possible extension of the Java Secure
Sockets Extension (JSSE) API. Our evaluation on
Tomcat server demonstrates the benefit of our
proposal for preventing server overload.

1. Introduction

Current web sites have to face three issues to keep

clients satisfied. First, the web community is growing
day after day, increasing exponentially the load that
sites must support. Second, current sites are subject to
enormous variations in demand, often in an
unpredictable fashion, including flash crowds that
cannot be processed. Third, dynamic web content is
becoming popular on current sites. At the same time,

all information that is confidential or has market value
must be carefully protected when transmitted over the
open Internet. Security between network nodes over the
Internet is traditionally provided using HTTPS [21].
With HTTPS, which is based on using HTTP over SSL
(Secure Socket Layer [13]), you can perform mutual
authentication of both the sender and receiver of
messages and ensure message confidentiality. This
process involves X.509 digital certificates that are
configured on both sides of the connection. This
widespread diffusion of dynamic web content and SSL
increases the performance demand on application
servers that host the sites, leading sometimes these
servers to overload (i.e. the volume of requests for
content at a site temporarily exceeds the capacity for
serving them and renders the site unusable).

During overload conditions, the response times may
grow to unacceptable levels, and exhaustion of
resources may cause the server to behave erratically or
even crash causing denial of services. In e-commerce
applications, which are heavily based on the use of
security, such server behavior could translate to sizable
revenue losses. For instance, [26] estimates that
between 10 and 25% of e-commerce transactions are
aborted because of slow response times, which
translates to about 1.9 billion dollars in lost revenue.

Overload prevention is a critical issue in order to
get a system that remains operational in the presence of
overload even when the incoming request rate is
several times greater than system capacity, and at the
same time is able to serve the maximum the number of
requests during such overload, maintaining response
times in acceptable levels. With these objectives,
several mechanisms have been proposed to face with
overload, such as admission control, request
scheduling, service differentiation, service degradation
or resource management.

Additionally, in many web sites, especially in e-
commerce, most of the applications are session-based.
A session contains temporally and logically related

request sequences from the same client. Session
integrity is a critical metric in e-commerce. For an
online retailer, the higher the number of sessions
completed the higher the amount of revenue that is
likely to be generated. The same statement cannot be
made about the individual request completions.
Sessions that are broken or delayed at some critical
stages, like checkout and shipping, could mean loss of
revenue to the web site. Sessions have distinguishable
features from individual requests that complicate the
overload control. For example, admission control on
per request basis may lead to a large number of broken
or incomplete sessions when the system is overloaded.

In this paper we present an overload control
mechanism based on SSL connections differentiation
and admission control. First, we propose a possible
extension of the Java Secure Sockets Extension (JSSE)
API [22], which implements a Java version of the SSL
protocol, to allow SSL connections differentiation
depending on if the connection will reuse an existing
SSL connection on the server or not. The SSL
connections differentiation can be very useful in order
to design intelligent overload control policies on
server, given the big difference existing on the
computational demand of new SSL connections versus
resumed SSL connections. This differentiation is done
with not significant additional cost. Second, we
propose a session-based adaptive admission control
mechanism for the Tomcat application server. This
mechanism will allow the server to avoid throughput
degradation and response time increments produced
with SSL connections on server saturation, increasing
the performance with good quality of service.
Moreover, the admission control mechanism will
maximize the number of sessions completed
successfully, allowing to e-commerce sites based on
SSL to increase the number of transactions completed,
generating higher benefit.

The rest of the paper is organized as follows:
Section 2 presents the related work. Section 3
introduces security for Java web applications,
describing the SSL protocol and its implementation for
Java. Sections 4 and 5 detail the implementation of our
SSL connections differentiation and SSL admission
control mechanisms. Section 6 describes the
experimental environment used in our evaluation.
Section 7 presents the evaluation results of the
overload control mechanism and finally, Section 8
presents the conclusions of this paper.

2. Related Work

The effect of overload on web applications has been

covered in several works, applying different

perspectives in order to prevent these effects. These
different approaches can be resumed on request
scheduling, admission control, service differentiation,
service degradation, resource management and almost
any combination of them.

Request scheduling refers to the order in which
concurrent requests should be served. Typically,
servers have been left this ordination to the operating
system. But, as it is well know from queuing theory that
shortest remaining processing time first (SRPT)
scheduling minimizes queuing time (and therefore the
average response time), some proposals [10][15]
implement policies based on this algorithm to prioritize
the service of short static content requests in front of
long requests. This prioritized scheduling in web
servers has been proven effective in providing
significantly better response time to high priority
requests at relatively low cost to lower priority
requests. Although scheduling can improve response
times, under extreme overloads other mechanisms
become indispensable. Anyway, better scheduling can
always be complementary to any other mechanism.

Admission control is based on reducing the amount
of work the server accepts when it is faced with
overload. Service differentiation is based on
differentiating classes of customers so that response
times of preferred clients do not suffer in the presence
of overload. Admission control and service
differentiation have been combined in some works to
prevent server overload. For example, ACES [6]
attempts to limit the number of admitted requests based
on estimated service times, allowing also service
prioritization. The evaluation of this approach is done
based only on simulation. Other works have considered
dynamic web content. An adaptive approach to
overload control in the context of the SEDA Web
server is described in [25]. SEDA decomposes services
into multiple stages, each one of which can perform
admission control based on monitoring the response
time through the stage. The evaluation includes
dynamic content in the form of a web-based email
service. In [12], the authors present an admission
control mechanism for e-commerce sites that externally
observes execution costs of requests, distinguishing
different requests types. Yaksha [17] implements a self-
tuning proportional integral controller for admission
control in multi-tier e-commerce applications using a
single queue model.

Some works have integrated the resource
management with other approaches as admission
control and service differentiation. For example, [3]
proposes resource containers as an operating system
abstraction that embodies a resource. [24] proposes a
resource overbooking based scheme for maximizing

revenue generated by the available resources in a
shared platform. [5] presents a prototype data center
implementation used to study the effectiveness of
dynamic resource allocation for handling flash crowds.
Cataclysm [23] performs overload control bringing
together admission control, service degradation and
dynamic provisioning of platform resources.

Service degradation is based on avoiding refusing
clients as a response to overload but reducing the
service offered to clients [1][23][25], for example in
the form on providing smaller content (e.g. lower
resolution images).

On most of the prior work, overload control is
performed on per request basis, which may not be
adequate for many session-based applications, such as
e-commerce applications. A session-based admission
control scheme has been reported in [8]. This approach
allows sessions to run to completion even under
overload, denying all access when the server load
exceeds a predefined threshold. Another approach to
session-based admission control based on
characterization of a commercial web server log,
discriminating the scheduling of requests based on the
probability of completion of the session that the
requests belong to is presented in [7].

Our proposal combines important aspects that
previous work has considered in isolation or simply has
ignored. First, we consider dynamic web content
instead of simpler static web content. Second, we focus
on session-based applications considering the
particularities of these applications when performing
admission control. Third, our proposal is fully adaptive
to the available resources and to the number of
connections in the server instead of using predefined
thresholds. Finally, we consider overload control on
secure web applications while none of the above works
has covered this issue.

Although none of them has covered overload
control, the influence of security on servers scalability
has been covered in some works. For example, the
performance and architectural impact of SSL on the
servers in terms of various parameters such as
throughput, utilization, cache sizes and cache miss
ratios has been analyzed in [18]. The impact of each
individual operation of TLS protocol in the context of
web servers has been studied in [9], showing that key
exchange is the slowest operation in the protocol.

3. Security for Java Web Applications

3.1 SSL Protocol

The SSL protocol provides communications privacy

over the Internet. The protocol allows client/server

applications to communicate in a way that is designed
to prevent eavesdropping, tampering, or message
forgery. To obtain these objectives it uses a
combination of public-key and private-key
cryptography algorithm and digital certificates (X.509).

The SSL protocol does not introduce a new degree
of complexity in web applications structure because it
works almost transparently on top of the socket layer.
However, SSL increases the computation time
necessary to serve a connection remarkably, due to the
use of cryptography to achieve their objectives. This
increment has a noticeable impact on server
performance, which has been evaluated in [14]. This
study concludes that the maximum throughput obtained
when using SSL connections is 7 times lower than
when using normal connections. The study also notices
that when the server is attending non-secure
connections and saturates, it can maintain the
throughput if new clients arrive, while if attending SSL
connections, the saturation of the server provokes the
degradation of the throughput.

The SSL protocol fundamentally has two phases of
operation: SSL handshake and SSL record protocol.
We will do an overview of the SSL handshake phase,
which is the responsible of most of the computation
time required when using SSL. The detailed description
of the whole protocol can be found in RFC 2246 [11].

The SSL handshake allows the server to
authenticate itself to the client using public-key
techniques like RSA, and then allows the client and the
server to cooperate in the creation of symmetric keys
used for rapid encryption, decryption, and tamper
detection during the session that follows. Optionally,
the handshake also allows the client to authenticate
itself to the server. Two different SSL handshake types
can be distinguished: The full SSL handshake and the
resumed SSL handshake. The full SSL handshake is
negotiated when a client establishes a new SSL
connection with the server, and requires the complete
negotiation of the SSL handshake, including parts that
spend a lot of computation time to be accomplished.
We have measured the computational demand of a full
SSL handshake in a 1.4 GHz Xeon to be around 175
ms. The SSL resumed handshake is negotiated when a
client establishes a new HTTP connection with the
server but using an existing SSL connection. As the
SSL session ID is reused, part of the SSL handshake
negotiation can be avoided, reducing considerably the
computation time for performing a resumed SSL
handshake. We have measured the computational
demand of a resumed SSL handshake in a 1.4 GHz
Xeon to be around 2 ms. Notice the big difference
between negotiate a full SSL handshake respect to
negotiate a resumed SSL handshake (175 ms vs. 2 ms).

Based on these two handshake types, two types of
SSL connections can be distinguished: the new SSL
connections and the resumed SSL connections. The
new SSL connections try to establish a new SSL
session and must negotiate a full SSL handshake. The
resumed SSL connections can negotiate a resumed SSL
handshake because they provide a reusable SSL session
ID (they resume an existing SSL session).

3.2 JSSE API Limitations

The Java Secure Socket Extension (JSSE) [22] is a

set of packages that enable secure Internet
communications. It implements a Java technology
version of Secure Sockets Layer (SSL) [13] and
Transport Layer Security (TLS) [11] protocols.

The JSSE API provides the SSLSocket and
SSLServerSocket classes, which can be instantiated
to create secure channels. The JSSE API supports the
initiation of a handshake on a SSL connection in one of
three ways. Calling startHandshake that explicitly
begins handshakes, or any attempt to read or write
application data through the connection causes an
implicit handshake, or a call to getSession tries to
set up a session if there is no currently valid session,
and an implicit handshake is done. After handshaking
has completed, session attributes can be accessed by
using the getSession method. If handshaking fails
for any reason, the SSLSocket is closed, and no
further communications can be done.

Notice that the JSSE API does not support any way
to consult if an incoming SSL connection provides a
reusable SSL session ID until the handshake is fully
completed. Having this information prior to handshake
negotiation could be very useful for example for
servers in order to do overload control based on SSL
connections differentiation, given the big difference
existing on the computational demand of new SSL
connections versus resumed SSL connections. It is
important to notice that the verification about an
incoming SSL connection provides a valid SSL session
ID is already performed by the JSSE API prior
handshaking in order to negotiate a full SSL handshake
or a resumed SSL handshake. Therefore, the addition
of a new interface to access this information would not
involve additional cost.

4. SSL Connections Differentiation

As we mentioned in the previous section, there is no

way in JSSE packages to consult if an incoming SSL
connection provides a reusable SSL session ID until the
handshake is fully completed. We propose the

extension of the JSSE API to allow applications to
differentiate new SSL connections from resumed SSL
connections prior the handshaking has started.

This new feature can be useful in many scenarios.
For example, a connection scheduling policy based on
prioritizing the resumed SSL connections (that is, the
short connections) will result in a reduction of the
average response time, as described in previous works
with static web content using the SRPT scheduling
[10][15]. Moreover, prioritizing the resumed SSL
connections will increase the probability for a client to
complete a session, maximizing the number of sessions
completed successfully. We have already commented
the importance of this metric in e-commerce
environments. Remember that the higher the number of
sessions completed the higher the amount of revenue
that is likely to be generated. In addition, a server could
limit the number of new SSL connections that it
accepts, in order to avoid throughput degradation
produced if server overloads.

In order to evaluate the advantages of being able to
differentiate new SSL connections from resumed SSL
connections and the convenience of adding this
functionality to the standard JSSE API, we have
implemented an experimental mechanism that allows
this differentiation prior to the handshake negotiation.
We have measured that this mechanism does not
suppose significant additional cost. The mechanism
works at system level and it is based on examining the
contents of the first TCP segment received on the
server after the connection establishment.

After a new connection is established between the
server and a client, the SSL protocol starts a handshake
negotiation. The protocol begins with the client sending
a SSL ClientHello message (see the RFC 2246 for
more details) to the server. This message can include a
SSL session ID from a previous connection if the SSL
session wants to be reused. This message is sent in the
first TCP segment that the client sends to the server.
The implemented mechanism checks the value of this
SSL message field to decide if the connection is a
resumed SSL connection or a new one instead.

The mechanism operation begins when a new
incoming connection is accepted by the Tomcat server,
and a socket structure is created to represent the
connection in the operating system as well as in the
JVM. After establishing the connection but prior to the
handshake negotiation, the Tomcat server requests to
the mechanism the classification of this SSL
connection, using a JNI native library that is loaded
into the JVM process. The library translates the Java
request into a new native system call implemented in
the Linux kernel using a Linux kernel module. The
implementation of the system call calculates a hash

function from the parameters provided by the Tomcat
server (local and remote IP address and TCP port)
which produces a socket hash code that makes possible
to find the socket inside of a connection established
socket hash table. When the system struct sock that
represents the socket is located and in consequence all
the received TCP segments for that socket after the
connection establishment, the first one of the TCP
segments is interpreted as a SSL ClientHello message.
If this message contains a SSL session ID with value 0,
it can be concluded that the connection tries to
establish a new SSL session. If a non-zero SSL session
ID is found instead, the connection tries to resume a
previous SSL session. The value of this SSL message
field is returned by the system call to the JNI native
library that, in turn, returns it to the Tomcat server.
With this result, the server can decide, for instance, to
apply an admission control algorithm in order to decide
if the connection should be accepted or rejected.

5. SSL Admission Control

In order to prevent server overload in secure

environments, we have incorporated to the Tomcat
server a session-oriented adaptive mechanism that
performs admission control based on SSL connections
differentiation. This mechanism has been developed
with two objectives. First, to prioritize the acceptation
of client connections that resume an existing SSL
session, in order to maximize the number of sessions
successfully completed. Second, to limit the massive
arrival of new SSL connections to the maximum
number acceptable by the server before overloading,
depending on the available resources.

To prioritize the resumed SSL connections, the
admission control mechanism accepts all the
connections that supply a valid SSL session ID. The
required verification to differentiate resumed SSL
connections from new SSL connections is performed
with the mechanism described in Section 4.

To avoid the server throughput degradation and
maintain acceptable response times, the admission
control mechanism must to avoid the server overload.
By keeping the maximum amount of load just below
the system capacity, overload is prevented and peak
throughput is achieved. For secure web applications,
the system capacity depends on the available
processors, as it has been demonstrated in [14], due to
the great computational demand of this kind of
applications. Therefore, if the server can use more
processors, it can accept more SSL connections without
saturating.

The admission control mechanism calculates
periodically, introducing an adaptive behavior, the

maximum number of new SSL connections that can be
accepted without overloading the server. This
maximum depends on the available processors for the
server and the computational demand required by the
accepted resumed SSL connections. The calculation of
this demand is based on the number of accepted
resumed SSL connections and the typical
computational demand of one of these connections.

After calculating the computational demand
required by the accepted resumed SSL connections and
with information relative to the available processors for
the server, the admission control mechanism can
calculate the remaining computational capacity for
attending new SSL connections. The admission control
mechanism will only accept the maximum number of
new SSL connections that do not overload the server
(they can be served with the available computational
capacity). The rest of new SSL connections arriving at
the server will be refused.

Notice that if the number of resumed SSL
connections increases, the server has to decrease the
number of new SSL connections it accepts, in order to
avoid server overload with the available processors and
vice versa, if the number of resumed SSL connections
decreases, the server can increase the number of new
SSL connections that it accepts.

Notice that this constitutes an interesting starting
point to develop autonomic computing strategies on the
server in a bidirectional fashion. First, the server can
restrict the number of new SSL connections it accepts
to adapt its behavior to the available resources (i.e.
processors) in order to prevent server overload.
Second, the server can inform about its resource
requirements to a global manager (which will distribute
all the available resources among the existing servers
following a given policy) depending on the rate of
incoming connections (new SSL connections and
resumed SSL connections) requesting for service.

6. Experimental Environment

6.1 Tomcat Servlet Container

We use Tomcat v5.0.19 [16] as the application

server. Tomcat is an open-source servlet container
developed under the Apache license. Its primary goal is
to serve as a reference implementation of the Sun
Servlet and JSP specifications. Tomcat can work as a
standalone server (serving both static and dynamic web
content) or as a helper for a web server (serving only
dynamic web content). In this paper we use Tomcat as
a standalone server.

Tomcat follows a connection service schema where,
at a given time, one thread (an HttpProcessor) is

responsible of accepting a new incoming connection on
the server listening port and assigning to it a socket
structure. From this point, this HttpProcessor will be
responsible of attending and serving the received
requests through the persistent connection established
with the client, while another HttpProcessor will
continue accepting new connections.

Persistent connections are a feature of HTTP 1.1
that allows serving different requests using the same
connection, saving a lot of work and time for the web
server, client and the network, considering that
establishing and tearing down HTTP connections is an
expensive operation. A connection timeout is
programmed to close the connection if no more
requests are received.

We have configured Tomcat setting the maximum
number of HttpProcessors to 100 and the connection
persistence timeout to 10 seconds.

6.2 Auction Site Benchmark (RUBiS)

The experimental environment also includes a

deployment of the RUBiS (Rice University Bidding
System) [2] benchmark servlets version 1.4.2 on
Tomcat. RUBiS implements the core functionality of
an auction site: selling, browsing and bidding. RUBiS
defines 27 interactions. Among the most important
ones are browsing items by category or region, bidding,
buying or selling items and leaving comments on other
users. 5 of the 27 interactions are implemented using
static HTML pages. The remaining 22 interactions
require data to be generated dynamically. RUBiS
supplies implementations using some mechanisms for
generating dynamic web content like PHP, Servlets and
several kinds of EJB.

The client workload for the experiments was
generated using a workload generator and web
performance measurement tool called Httperf [19].
This tool, which supports both HTTP and HTTPS
protocols, allows the creation of a continuous flow of
HTTP/S requests issued from one or more client
machines and processed by one server machine. One of
the parameters of the tool represents the number of new
clients per second initiating an interaction with the
server. Each emulated client opens a session with the
server. Each session is a persistent HTTP/S connection
with the server. Using this connection, the client
repeatedly makes a request (the client can also pipeline
some requests), parses the server response to the
request, and follows a link embedded in the response.
The workload distribution generated by Httperf was
extracted from the RUBiS client emulator, which uses a
Markov model to determine which subsequent link
from the response to follow. Each emulated client waits

for an amount of time, called the think time, before
initiating the next interaction. The think time is
generated from a negative exponential distribution with
a mean of 7 seconds. Httperf allows also configuring a
client timeout. If this timeout is elapsed and no reply
has been received from the server, the current
persistent connection with the server is discarded, and a
new emulated client is initiated. We have configured
Httperf setting the client timeout value to 10 seconds.
RUBiS defines two workload mixes: a browsing mix
made up of only read-only interactions and a bidding
mix that includes 15% read-write interactions.

6.3 Hardware & Software Platform

Tomcat runs on a 4-way Intel XEON 1.4 GHz with

2 GB RAM. We use MySQL v4.0.18 [20] as our
database server with the MM.MySQL v3.0.8 JDBC
driver. MySQL runs on a 2-way Intel XEON 2.4 GHz
with 2 GB RAM. We have also a 2-way Intel XEON
2.4 GHz with 2 GB RAM machine running the
workload generator (Httperf 0.8). Client machine
emulates the configured number of clients performing
requests to the server during 10 minutes using the
browsing mix (read-only interactions). All the
machines are connected through a 1 Gbps Ethernet
interface and run the 2.6 Linux kernel. For our
experiments we use the Sun JVM 1.4.2 for Linux, using
the server JVM instead of the client JVM and setting
the initial and the maximum Java heap size to 1024
MB. All the tests are performed with the common
RSA-3DES-SHA cipher suit, using 1024 bit RSA key.

7. Evaluation

In this section we present the evaluation results of

the overload control mechanism on Tomcat server,
comparing the results obtained with the original
Tomcat.

7.1 Original Tomcat

Figure 1 shows the Tomcat throughput as a function

of the number of new clients per second initiating a
session with the server when running with different
number of processors. Notice that for a given number
of processors, the server throughput increases linearly
with respect to the input load (the server scales) until a
determined number of clients hit the server. At this
point, the throughput achieves its maximum value.
Notice that running with more processors allows the
server to handle more clients before saturating, so the
maximum achieved throughput is higher. When the

number of clients that overload the server has been
achieved, the server throughput degrades until
approximately the 20% of the maximum achievable
throughput while the number of clients increases.

As well as degrading the server throughput, the
server overload also affects to the server response time,
as shown in Figure 2. This figure shows the server
average response time as a function of the number of
new clients per second initiating a session with the
server when running with different number of
processors. Notice that when the server is overloaded
the response time increases (especially when running
with one processor) while the number of clients
increases.

Server overload has another undesirable effect,
especially in e-commerce environments where session
completion is a key factor. As shown in Figure 3,
which shows the number of sessions completed
successfully when running with different number of

processors, when the server is overloaded only a few
sessions can finalize completely. Consider the great
revenue lost that this fact can provoke for example in
an online store, where only a few clients can finalize
the acquisition of a product.

The cause of this great performance degradation on
server overload has been analyzed in [14]. They
conclude that the server throughput degrades when
most of the incoming client connections must negotiate
a full SSL handshake instead of resuming an existing
SSL connection, requiring a computing capacity that
the available processors are unable to supply. This
circumstance is produced when the server is
overloaded and it cannot handle the incoming requests
before the client timeouts expire. In this case, clients
with expired timeouts are discarded and new ones are
initiated, provoking the arrival of a great amount of
new client connections that need the negotiation of a
full SSL handshake, provoking the server performance
degradation.

Considering the described behavior, it makes sense
to apply an admission control mechanism in order to
improve server performance in the following way.
First, to filter the massive arrival of client connections
that need to negotiate a full SSL handshake that will
saturate the server, avoiding the server throughput
degradation and maintaining a good quality of service
(good response time) for already connected clients.
Second, to prioritize the acceptation of client
connections that resume an existing SSL session, in
order to maximize the number of sessions successfully
completed.

7.2 Tomcat with Admission Control

Figure 4 shows the Tomcat throughput as a function

of the number of new clients per second initiating a

Figure 1. Original Tomcat throughput with different
number of processors

Figure 3. Completed sessions by original Tomcat
with different number of processors

Figure 2. Original Tomcat response time with
different number of processors

session with the server when running with different
number of processors. Notice that for a given number
of processors, the server throughput increases linearly
with respect to the input load (the server scales) until a
determined number of clients hit the server. At this
point, the throughput achieves its maximum value.
Until this point, the server with admission control
behaves in the same way than the original server.
However, when the number of clients that would
overload the server has been achieved, the admission
control mechanism can avoid the throughput
degradation, maintaining it in the maximum achievable
throughput, as shown in Figure 5. Notice that running
with more processors allows the server to handle more
clients, so the maximum achieved throughput is higher.

The admission control mechanism on Tomcat
allows also maintaining the response time in levels that
guarantee a good quality of service to the clients, even
when the number of clients that would overload the

server has been achieved, as shown in Figure 5. This
figure shows the server average response time as a
function of the number of new clients per second
initiating a session with the server when running with
different number of processors.

Finally, the admission control mechanism has also a
beneficial effect for session-based clients. As shown in
Figure 6, which shows the number of sessions finalized
successfully when running with different number of
processors, the number of sessions that can finalize
completely does not decrease, even when the number
of clients that would overload the server has been
achieved.

8. Conclusions

In this paper we have presented a session-based

adaptive overload control mechanism based on SSL
connections differentiation and admission control.
First, we have proposed a possible extension of the
JSSE API in order to allow the differentiation of
resumed SSL connections (that reuse an existing SSL
session on server) from new SSL connections. Second,
we have incorporated to the Tomcat server a session-
based adaptive admission control mechanism that
prioritizes resumed SSL connections to maximize the
number of sessions completed successfully (which is a
very important metric on e-commerce environments).
The admission control also limits dynamically the
number of new SSL connections accepted depending
on the available resources and the number of resumed
SSL connections accepted, in order to avoid server
overload.

Our evaluation demonstrates the benefit of our
approach on overload prevention for servers on secure
environments, and confirms that security must be

Figure 5. Tomcat with admission control response
time with different number of processors

Figure 4. Tomcat with admission control throughput
with different number of processors

Figure 6. Sessions completed by Tomcat with
admission control with different number of processors

considered as an important issue that can heavily affect
the scalability and performance of web applications.

9. Acknowledgments

This work is supported by the Ministry of Science

and Technology of Spain and the European Union
(FEDER funds) under contract TIN2004-07739-C02-
01 and by the CEPBA (European Center for
Parallelism of Barcelona). For additional information
about the authors, please visit the Barcelona eDragon
Research Group web site [4].

10. References

[1] T. Abdelzaher and N. Bhatti. Web Content Adaptation
to Improve Server Overload Behavior. Computer
Networks, Vol. 31 (11-16), pp. 1563-1577, May 1999.

[2] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani and W. Zwaenepoel.
Specification and Implementation of Dynamic Web Site
Benchmarks. IEEE 5th Annual Workshop on Workload
Characterization (WWC-5), Austin, Texas, USA.
November 25, 2002.

[3] G. Banga, P. Druschel and J. C. Mogul. Resource
Containers: A New Facility for Resource Management
in Server Systems. 3rd Symposium on Operating
Systems Design and Implementation (OSDI’99), pp. 45-
58, New Orleans, Louisiana, USA. February 22-25,
1999.

[4] Barcelona eDragon Research Group
http://www.cepba.upc.es/eDragon

[5] A. Chandra and P. Shenoy. Effectiveness of Dynamic
Resource Allocation for Handling Internet Flash
Crowds. Technical Report TR03-37, Department of
Computer Science, University of Massachusetts, USA.
November 2003.

[6] X. Chen, H. Chen and P. Mohapatra. ACES: An
Efficient Admission Control Scheme for QoS-Aware
Web Servers. Computer Communications, Vol. 26 (14),
pp. 1581-1593. September 2003.

[7] H. Chen and P. Mohapatra. Overload Control in QoS-
aware Web Servers. Computer Networks, Vol. 42 (1),
pp. 119-133. May 2003.

[8] L. Cherkasova and P. Phaal. Session-Based Admission
Control: A Mechanism for Peak Load Management of
Commercial Web Sites. IEEE Transactions on
Computers, Vol. 51 (6), pp. 669-685. June 2002.

[9] C. Coarfa, P. Druschel, and D. Wallach. Performance
Analysis of TLS Web Servers. 9th Network and
Distributed System Security Symposium (NDSS’02),
San Diego, California, USA. February 6-8, 2002.

[10] M. Crovella, R. Frangioso and M. Harchol-Balter.
Connection Scheduling in Web Servers. 2nd Symposium
on Internet Technologies and Systems (USITS’99),
Boulder, Colorado, USA. October 11-14, 1999.

[11] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
RFC 2246. January 1999.

[12] S. Elnikety, E. Nahum, J. Tracey and W. Zwaenepoel. A
Method for Transparent Admission Control and
Request Scheduling in E-Commerce Web Sites. 13th
International Conference on World Wide Web
(WWW’04), pp. 276-286, New York, New York, USA.
May 17-22, 2004.

[13] A. O. Freier, P. Karlton, and C. Kocher. The SSL
Protocol, Version 3.0. November 1996.

[14] J. Guitart, V. Beltran, D. Carrera, J. Torres and E.
Ayguadé. Characterizing Secure Dynamic Web
Applications Scalability. 19th International Parallel and
Distributed Symposium (IPDPS’05), Denver, Colorado,
USA. April 4-8, 2005.

[15] M. Harchol-Balter, B. Schroeder, N. Bansal and M.
Agrawal. Size-based Scheduling to Improve Web
Performance. ACM Transactions on Computer Systems
(TOCS), Vol. 21 (2), pp. 207-233. May 2003.

[16] Jakarta Tomcat Servlet Container
http://jakarta.apache.org/tomcat

[17] A. Kamra, V. Misra and E. Nahum. Yaksha: A
Controller for Managing the Performance of 3-Tiered
Websites. 12th International Workshop on Quality of
Service (IWQoS 2004), Montreal, Canada. June 7-9,
2004.

[18] K. Kant, R. Iyer, and P. Mohapatra. Architectural
Impact of Secure Socket Layer on Internet Servers. 2000
IEEE International Conference on Computer Design
(ICCD’00), pp. 7-14, Austin, Texas, USA. September
17-20, 2000.

[19] D. Mosberger and T. Jin. httperf: A Tool for Measuring
Web Server Performance. Workshop on Internet Server
Performance (WISP’98) (in conjunction with
SIGMETRICS’98), pp. 59-67. Madison, Wisconsin,
USA. June 23, 1998.

[20] MySQL
http://www.mysql.com

[21] E. Rescorla. HTTP over TLS. RFC 2818. May 2000.
[22] Sun Microsystems. Java Secure Socket Extension

http://java.sun.com/products/jsse/
[23] B. Urgaonkar and P. Shenoy. Cataclysm: Handling

Extreme Overloads in Internet Services. Technical
Report TR03-40, Department of Computer Science,
University of Massachusetts, USA. November 2004.

[24] B. Urgaonkar, P. Shenoy and T. Roscoe. Resource
Overbooking and Application Profiling in Shared
Hosting Platforms. 5th Symposium on Operating
Systems Design and Implementation (OSDI’02),
Boston, Massachusetts, USA. December 9-11, 2002.

[25] M. Welsh and D. Culler. Adaptive Overload Control for
Busy Internet Servers. 4th Symposium on Internet
Technologies and Systems (USITS’03), Seattle,
Washington, USA. March 26-28, 2003.

[26] T. Wilson. E-Biz Bucks Lost under SSL Strain. Internet
Week Online. May 20, 1999.
http://www.internetwk.com/lead/lead052099.htm

