
XVII JORNADAS DE PARALELISMO - ALBACETE, SEPTIEMBRE, 2006

An Enhancement for a Scheduling
Logic Pipelined over two Cycles

Rubén Gran, Enric Morancho, Àngel Olivé & José María Llabería

Department of Computer Architecture, Polytechnic University of Catalonia.

{rgran, enricm, angel & llaberia}@ac.upc.edu
Abstract—Out of order processors use the dynamic

scheduling logic to expose and exploit parallelism. Pipelining
this logic may sacrifice the ability to execute dependent
instructions in consecutive cycles. Several previous studies
have shown that pipelining the scheduling logic over two
cycles degrades performance; our evaluations, in a 4-way
machine, on SPEC-2000 integer benchmarks show a
performance degradation about 11% with respect to an
unpipelined scheduling logic.

In this work, we present two non-speculative
enhancements for a scheduling logic pipelined over two
cycles. The idea is computing in advance which instructions
will be woken-up by all instructions that are currently
competing for selection. Once all of them have been selected,
the pre-computed group of instructions can compete for
selection in next cycle. The enhancement goal is tolerating the
scheduling-loop latency when not enough ILP is available,
through the scheduling of dependent instructions in
consecutive cycles.

Our results in a 4-way machine show that our two
proposed enhancements perform, in average, slightly better
than two previously proposed speculative schedulers. The
performance of our proposals is within a 2.6% and 2% of an
unpipelined ideal scheduler, respectively.

Keywords—Dynamic scheduling, Pipelined scheduling
logic, Back-to-back execution

I. INTRODUCTION

The dynamic scheduling logic allows both exposing and
exploiting the instruction-level parallelism (ILP). The
scheduling task is divided into two phases: wakeup and
select. The wakeup logic marks instructions as ready when
their data dependencies are satisfied. The select logic picks
instructions for execution from the pool of ready
instructions by considering instruction priorities and
available resources.

Both the wakeup logic and the select logic form a
hardware loop, the scheduling loop, because an instruction
cannot be scheduled until its producer instructions have
been scheduled. Assuming that the producer-instruction
latency is one cycle then, in order to execute dependent
instructions in consecutive cycles, the scheduling task
must be performed in one cycle. A producer instruction
and its consumer instruction are executed back-to-back
when the consumer instruction consumes the produced
result as soon as it is available.

Enlarging the issue queue to expose more ILP may
increase the latency needed to wakeup and select

instructions, which may require reducing clock frequency.
An approach to either maintaining or increasing clock
frequency is pipelining the scheduling logic over several
cycles, but then the IPC may decrease, because the
scheduling logic sometimes is unable to issue dependent
instructions in consecutive cycles. Our experimental
results with SPEC-2000 integer benchmarks in a 4-issue
machine show that pipelining the scheduling logic over
two cycles has an average IPC degradation about 11%
with respect to an unpipelined scheduling logic. Other
authors report similar results ([2], [16], [20]).

Techniques that allow pipelining the scheduling logic
without sacrificing the back-to-back execution of
dependent instructions are an option to design
high-frequency processors. However, proposed techniques
([2], [20]) are speculative.

In this paper, we enhance a scheduling logic pipelined
over two cycles to increase its performance. The proposed
enhancement is non-speculative and able to execute
dependent instructions in consecutive cycles when not
enough ILP is available. Consequently, we manage to
tolerate the scheduling-logic latency. The idea of the
enhancement is computing in advance which instruction
group will be woken up by all one-cycle execution-latency
instructions that are currently competing for selection.
Then, once all these instructions have been selected, the
pre-computed instruction group can compete for selection
in next cycle and back-to-back execution may be
performed.

Our results show that our two proposed enhancements
perform, in average, better than two previously proposed
speculative schedulers ([2], [20]), in SPEC-2000 integer
benchmarks. The performance of our proposal is within a
2.6% and 2% of an ideal scheduler (unpipelined),
respectively.

This paper is structured as follows: Section II outlines
the processor model being used and motivates the work.
Section III describes the proposed enhancement.
Section IV details the simulation environment. Section V
evaluates the proposed models and compares it with two
previously proposed mechanisms. Section VI discusses
related work and Section VII concludes this paper.

II. BASELINE PROCESSOR MODEL

The pipeline of a dynamically scheduled processor is
shown in Figure 1, where each stage can take one or more
cycles.

GRAN, MORANCHO, OLIVE & LLABERIA . AN ENHANCEMENT FOR A SCHEDULING LOGIC PIPELINED OVER TWO CYCLES

In the front-end stages of the pipeline (fetch, decode
and rename stages), instructions are brought from the
instruction cache, decoded and false register
dependencies are removed. After that, the instructions
are dispatched into the issue queue and wait there for the
availability of both their source operands and execution
resources. When an instruction is selected for execution,
the payload and its source registers are read in following
cycles. With its source operands, the instruction is
executed and its result is written into the register file.
Finally, the instruction waits for committing in program
order.

Fig. 1. Processor Pipeline. F: Fetch, D: Decode, Re: Rename, IQ:
Issue Queue, P: Read Payload, R: Read Register File, E: Execution;
WR: Write Register File, C: Commit.

Wakeup logic. We use a wired-OR style wakeup
logic array ([2], [8]). Dependencies are indicated using
an instructions-instructions1 wakeup matrix [2] (or
physical registers-instructions2 wakeup matrix [8]). Bit
vectors (rows) perform dependence tracking. Each bit in
the vector represents the dependence on a parent
instruction [2] (or on the data availability of a physical
register [8]). When an instruction is issued, it sets the
wakeup line (column) corresponding to its own
issue-queue entry [2] (or to its destination physical
register [8]). Each instruction monitors the readiness of
its source operands every cycle by checking if all
wakeup lines of matching dependence bits are set. Each
issue-queue entry corresponding to a ready instruction
activates a request signal in order to notify its readiness.

Select logic. The input of the select logic are request
signals from the wakeup logic plus priority information.
The select logic picks the oldest ready instructions
taking into account available resources at each issue
port. Instructions selected by the select logic are the
input of the wakeup logic on next clock cycle in order to
wakeup instructions dependent on the selected ones.

Figure 2 shows diagrams of both one-cycle latency
(unpipelined) and two-cycle latency scheduling loops.
As a general rule, back-to-back execution is possible
only if the execution latency of the producer instruction
is greater than or equal to the scheduling-loop latency. In
[2], [16], [20], their authors have concluded that
back-to-back execution is a performance goal.

Fig. 2. Diagrams of scheduling loops. a) one-cycle latency, b)
two-cycle latency. (W: Wakeup, S: Select)

Table I shows the distribution of committed

instructions in the SPEC-2000 benchmarks taking into
account their execution latency and if the instructions
produce a value that is stored in the register file
(Section IV details benchmarks, simulated intervals and
the execution latency of the instructions). We observe
that integer benchmarks double the amount of one-cycle
execution-latency instructions with respect to
floating-point benchmarks; consequently, integer
benchmarks will be more sensitive to the
scheduling-loop latency.

In this paper, the baseline processor has a two-cycle
latency scheduling loop. Then, at least, there is a
two-cycle delay between issuing an instruction and
issuing its dependent instructions. So, in the issue cycle
between issuing an one-cycle execution-latency
instruction and issuing its dependent instruction, the
scheduling logic must be able to exploit ILP in order not
to degrade performance with respect to the unpipelined
scheduling logic. For multi-cycle execution-latency
producer instructions (greater than one cycle), pipelining
the scheduling logic does not degrade performance with
respect to an unpipelined scheduling logic.

III. ENHANCED SCHEDULING LOGIC

In this section we describe a non-speculative
enhancement that improves the performance of a
two-cycle latency scheduling logic.

A. Base enhancement (E)

The idea is computing in advance which instructions will
be woken up by all instructions currently competing for
selection. Once, all of them have been selected, the
pre-computed group of instructions can compete for
selection in next cycle. This idea is applied only to
instructions dependent on instructions with an execution
latency shorter than the scheduling-loop latency.
Therefore, despite of the scheduling-logic latency,
back-to-back execution is possible. The remaining
instructions use the conventional two-cycle latency
scheduling logic.

Figure 3 shows a scheme of a two cycle latency
scheduling logic with the proposed enhancement logic.
The base two-cycle latency scheduling logic is
composed by the wakeup matrix A and the select logic.
The output of the selection logic is, in the next cycle, the
input of the wakeup matrix A. On each selection cycle,
the select logic picks the oldest instructions that remain
in its input, taking into account resource availability at

1 Each wakeup-matrix row and each wakeup-matrix column
corresponds to an instruction inserted into the issue queue.
2 Each wakeup-matrix row corresponds to an instruction inserted into
the issue queue and each wakeup-matrix column corresponds to a
physical register.

Front-End Back-End

F D Re IQ P R E WR C

W

selected instructions

S

a) b)

W/S

selected instructions

TABLE I DISTRIBUTION OF COMMITTED
INSTRUCTIONS ACCORDING TO THEIR EXECUTION

LATENCY IN THE SPEC-2000 BENCHMARKS.

updating register file
not updating
register fileexecution latency

Benchmarks one cycle multicycle
Integer 44.30% 32.05% 23.65%

Floating Point 23.62% 62.40% 13.98%

XVII JORNADAS DE PARALELISMO - ALBACETE, SEPTIEMBRE, 2006

each issue port.

Fig. 3. Base proposal. The output of logic C are the instructions with
execution latency greater than or equal to scheduling-logic latency that
have been selected by the selection logic. The output of logic D are the
instructions with execution latency shorter than the scheduling-logic
latency that are currently competing for selection. The logic labeled as
M merges request signals of the wakeup matrix B with request signals
of the wakeup matrix A. Also, the M logic eliminates duplicated
request signals. The zero-detection logic detects if all one-cycle
execution-latency instructions, that are currently competing for
selection, have been scheduled.

The wakeup matrix B computes in advance which
dependent instructions will be woken up by the
one-cycle execution-latency instructions which are in the
input of the selection logic.

In rename stage, each instruction is classified taking
into account the latency of the instructions that wake it
up (parent instructions). At dispatch time, all
instructions are stored in wakeup matrix A. In wakeup
matrix B are stored instructions that may be woken up by
instructions whose execution latency is shorter than the
scheduling-logic latency.

Inputs of the wakeup matrix B are: a) one-cycle
execution-latency instructions in the input of the select
logic and b) instructions selected by the selection logic
that have an execution latency greater than or equal to
the scheduling-loop latency. These inputs are
respectively calculated by filters D and C (Figure 3),
using the instruction classification performed in rename
stage.

The logic circuit M merges the request signals that are
generated by both wakeup matrices. These request
signals are merged if all one-cycle execution-latency
instructions pending for selection in the input of the
selection logic have been scheduled (zero-detection
logic).

The request signal of an instruction that is woken up
by an one-cycle execution-latency instruction is
activated in both wakeup matrices at different cycles.
First, when the parent instruction is in the input of the
select logic, the request signal is activated in wakeup
matrix B. Later, when the parent is selected, the request
signal is activated in wakeup matrix A. Then, for every
instruction inserted in both wakeup matrices, the logic

circuit M filters out the latest request signal to arrive
related to the same entry. Therefore, only one request
signal is observed by the selection logic. Another case
happens when the latest arriving operand of an
instruction stored in wakeup matrix B is produced by an
instruction whose execution latency is greater than or
equal to the scheduler-logic latency. In this case both
request signals are activated in the same cycle.

Figure 4 shows an example of instruction scheduling
in which, on behalf of understanding, only one
instruction can be issued per cycle. The IQ label means
that the instruction is waiting to be ready in the issue
queue. A and B labels mean that the instruction wakes
up in wakeup matrices A and B respectively. The RI
label symbolizes that the instruction is waiting for
selection in the input of the selection logic. Finally, the S
label means that the instruction is selected for execution.

Fig. 4. Scheduling example of the proposed mechanism. A bar
between cycles indicates that the output of wakeup matrix B is merged
with the output of wakeup matrix A.

In Figure 4, the source operands of the first two
instructions are available on dispatch, and consequently,
both instructions wake up in cycle 1. Next cycle,
instructions 1 and 2 are candidate for selection. Also in
cycle 2, instruction 1 wakes instruction 3 up in wakeup
matrix B and it waits to be merged until all one-cycle
execution-latency instructions in the input of the select
logic have been scheduled (instructions 1 and 2). At the
end of cycle 3, the output of the wakeup matrix B is
merged with the output of the wakeup matrix A, and
also, logic circuit M detects the duplication of request
signals of the instruction 3. In cycle 4, instruction 3
wakes instruction 4 up in wakeup matrix B, and also,
instruction 3 is selected by the selection logic. At the end
of cycle 4, the zero-detection logic detects that there is
no instruction pending to be selected and the output of
the wakeup matrix B is merged again. Then, the
instruction 4 is in the input of the select logic and it is
selected in cycle 5. In cycle 5, the logic circuit M detects
duplication of the request signal of instruction 4.

B. Adding instruction fusing (E-F)

The proposed enhancement can be improved by taking
advantage of a program characteristic: a large number of
instructions has only one source operand (avg: 78.6% of
committed instructions in SPECInt 2000). Moreover, at
dispatch time, some two-operand instructions have
already available one of them. Consequently only one
operand must be tracked by the wakeup matrix.

Then, we make use of fusing instructions (a producer
instruction and its dependent one) in order to favour
back-to-back execution of dependent instructions. Two
instructions are fused when producer instruction is an
one-cycle execution-latency instruction and the
consumer instruction only depends on this instruction.

In our model E-F, the advantages of fusing instructions

wakeup matrix A

wakeup select

zero-detection logic

logiclogic (A)

wakeup select

wakeup matrix B

wakeup
logic (B)

M

all instructions

D) C)

D
C

Cycles 1 2 3 4 5

1. add r1←r2, r3 A S

2. add r4←r5, r6 A RI S

3. sub r9←r1, r7 IQ B A S

4. sub r10←r9, r8 IQ IQ IQ B A/S

GRAN, MORANCHO, OLIVE & LLABERIA . AN ENHANCEMENT FOR A SCHEDULING LOGIC PIPELINED OVER TWO CYCLES

are twofold. First, the consumer instruction can compete
for selection once the producer instruction have been
selected. Therefore, back-to-back execution is possible.
Second, it is not necessary to store the consumer
instruction in the wakeup matrix B for waking it up.

The possibility of fusion is detected in rename stage.
The fused instructions must belong to the same dynamic
basic block and the producer instruction must be in the
issue queue.

The instruction fused with its producer instruction is
the first one in program order that satisfies the previous
conditions. Note that the proposed instruction fusing is
simple because both producer and consumer instructions
belong to the same basic block.

In our evaluations, two issue-queue entries are
allocated to fused instructions in wakeup matrix A and
two issue cycles are needed to schedule them. Therefore,
we maintain the same pressure than previous models
over the issue-queue entries of wakeup matrix A and the
issue ports.

IV. SIMULATION ENVIRONMENT

A. Processor model

We have modified SimpleScalar 3.0c [2] in order to
model a Reorder Buffer and separate issue queues (IQ).
We assume an out-of-order processor with fifteen stages
from Fetch to IQ and two stages between IQ and
Execution. Other processor and memory parameters are
listed in Table II.

In Table III are listed the instructions latencies
assumed in this work.

We split store instructions into two instructions: STA
(store address computation) and STD (store data).
Therefore, two issue-queue entries are allocated to each
store instruction.

A load instruction can be issued only after issuing all

the STA instructions corresponding to the store
instructions older than the load instruction.
Consequently, we made each load instruction dependent
on all its older STA instructions.

The IQ is divided into an integer and floating-point
IQ’s. Our proposals are applied only to the integer IQ
because the execution latency of most FP instructions is
greater than the scheduling-loop latency.

B. Workload
We use SPEC2000 integer benchmarks compiled with

full optimizations on a Alpha machine. We simulate a
contiguous run of 100M-instruction from SimPoints [19]
after a warming-up of 100M-instruction. Table IV shows
their input data sets.

V. RESULTS

To evaluate the performance of our proposed
enhancement we have simulated several models with a
two-cycle latency scheduling loop.

• A baseline model (B) where back-to-back execution
of dependent instructions is sacrificed when producer
instructions have one-cycle execution latency. Also,
we model instruction fusing (B-F) with same
conditions than in Section B.
• Two models implementing our proposals: E and E-F.
• For comparison purposes, B-Double model doubles
the number of integer issue-queue entries of the
baseline model. This model is intended for showing us
what it is more cost-effective, dedicating added IQ
entries to either expose more parallelism or favour the
back-to-back execution of dependent instructions.
• For comparison purposes, we model the Speculative
Wakeup (SW, [20]) and the Select-Free (SF, [2])
mechanisms. Both of them are speculative
mechanisms designed to tolerate the scheduling-logic
latency. They are described in Section VI. In our
evaluations, the Speculative Wakeup mechanism is
implemented by using two wakeup matrices (the first
one for tracking the parent instructions and the second
one for tracking the grandparent instructions). In the
Select-Free mechanism, speculation is checked in
register-read stage.
Moreover, we simulate an ideal model (ID) with

unpipelined scheduling-loop (that is, its latency is one
cycle). However, in order to remove the effect of a
branch-misprediction penalty shorter than in the other
models, its pipeline depth is kept consistent with them
by adding one extra stage in the front-end.

Table V shows the IPC achieved for each benchmark

TABLE II PROCESSOR AND MEMORY PARAMETERS

Model
Fetch and Decode width 4

Branch predictor: hybrid (bimodal, gshare) 16 bits
ROB size 128 entries
LSQ size 64 entries

Issue-queue size Integer / Floating point 32 / 20 entries
Functional Units Integer / Floating point 4 / 2

Memory access ports 2

Memory hierarchy
L1 I-cache 32KB, 4-way, 2 cycles
L1 D-cache 32KB, 4-way, 2 cycles

Line size 32 B
L2 Unified Cache 256 KB, 4-way, 12 cycles

Line size 32 B
L2-Main memory bus 8B / 2 cycles
Main memory latency 100 cycles

TABLE III EXECUTION LATENCY (IN CYCLES) OF THE
INSTRUCTIONS.

Latency Latency
ALU 1 Floating point add, mul 4 pipelined

Load 3 Floating point divide 15 not pipelined
integer multiply 10 not pipelined others 1

TABLE IV SIMULATED BENCHMARKS AND THEIR
INPUT DATA SET.

Bench
.

Data set
Bench

.
Data set

Bench
.

Data set

bzip2 program-ref gzip program-ref twolf ref
crafty ref mcf ref vortex one-ref
eon rushmeier-ref parser ref vpr route-ref
gcc 166-ref perl diffmail-ref

XVII JORNADAS DE PARALELISMO - ALBACETE, SEPTIEMBRE, 2006

in B model.

Figure 5 shows the speed-up of all models with respect
to the B model. We present individual results for each
SPEC-2000 integer benchmark and two average values:
for all benchmarks (HM) and for all benchmarks but mcf
(HM-mcf) due to its biased memory behaviour.

Our proposed models, in average, outperform both the
B-Double and the B-F models. The B-Double model
performs better than our proposed models in
benchmarks mcf and vortex. However, in the other
benchmarks, doubling the number of issue-queue entries
to expose more parallelism is not cost-effective. It is
better to favour the back-to-back execution of dependent
instructions. Our proposed models also perform better
than B-F model in all benchmarks. B-F model increases
performance, in average, about 2.8% with respect to B
model. However, in gzip, performance improvement
reaches 9.1%.

We observe that our proposed models, in average,
outperform the speculative models (SW and SF). The
SW model performs better than our proposed models
only in benchmark vpr; the SF model performs better
than E model in benchmarks bzip2, gzip, perl and vpr.
However, the E-F model is outperformed by the SF
model only in the benchmark vpr.

Performance of E and E-F models are, in average,
within 2.6% and 2% of the ID model, respectively. In the
E-F model, instruction fusing permits a consumer
instruction, that has been fused with its producer, to
avoid waiting for the next merge operation to compete
for selection. Otherwise, in the E model, consumer
instructions have to wait for the complete schedule of all
one-cycle execution-latency instructions, that are
currently competing for selection. Therefore, in the E-F
model, those instructions could save some cycles to
reach the selection stage. In average, a 19.2% of
dispatched instructions are fused with their producer
instruction.

While both the SF and the SW models are speculative,
our proposed models are not. The SF model must
re-schedule some instructions, that have been
speculatively woken-up. This involves activity, which
wastes energy, in both the select logic and the register

file. Our evaluations show that, in average, in the SF
model the re-schedulings affect to a 3.4% of committed
instructions and a 3.0% of selections by the select logic.

The SW model may select instructions whose
selection will be later nullified because parent
instructions have not been issued. These false selections
affect, in average, to a 7.6% of the committed
instructions and a 4.6% of selections by the select logic.

The SW model and our proposed models use two
wakeup matrices. In the SW model, all instructions are
stored in both wakeup matrices. However, in our
proposed models, the wakeup matrix B stores bit
dependence vectors of an instruction only if it can be
woken up by an one-cycle execution-latency instruction.
In the proposed E model the average occupancy of
wakeup matrix B is a 19% smaller than the average
occupancy of wakeup matrix A. And for the model E-F,
wakeup matrix B is occupied, in average, a 34% less
than the wakeup matrix A.

In the SW model and in our proposed models, the
empty entries of both wakeup matrices can be
dynamically deactivated [1]. Then, our proposed models
are more energy-efficient than SW model because the
average occupancy of wakeup matrix B is smaller.
Moreover, once the request signal of an instruction is
detected by logic circuit M, its mirror entry in the other
wakeup matrix can be deactivated.

VI. RELATED WORK

In order to reduce the scheduling latency, Palacharla et
al. [16] proposed dispatching chains of dependent
instructions into FIFO queues; the instructions
considered to be issued are only the instructions heading
each FIFO queue. Another works preschedule the
instructions taking advantage of the fact that most
instruction latencies are known at decode time ([5], [7],
[14]). At dispatch time, instructions are sorted into a
buffer according to their predicted issue cycle. The
schemes mainly differ in the mechanism that deals with
variable-latency instructions, e.g. load instructions, and
their chains of dependent instructions; a structure like an
issue queue is used for these cases. All these techniques
require estimating the issue cycle of instructions before
inserting them in the buffer structure.

Some proposals exploit the fact that most
register-writing instructions have, at most, one
dependent instruction currently in the issue queue. Based

TABLE V IPC OF THE BASELINE MODEL (B).

bzip2crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
1.34 1.86 2.12 1.94 1.38 1.60 0.13 1.01 1.38 0.88 2.38 0.77

-5

0

5

10

15

20

25

bzip2
crafty eon

gap
gcc

gzip mcf

parser
perl

tw
olf

vo
rte

x vpr
HM

HM-m
cf

%
 S

p
ee

d
 u

p

ID E E-F SW SF B-Double B-F

Fig. 5. Speed-up with respect to the B model

GRAN, MORANCHO, OLIVE & LLABERIA . AN ENHANCEMENT FOR A SCHEDULING LOGIC PIPELINED OVER TWO CYCLES

on this observation, the proposed designs have structures
that keep track of one or several instructions that
consume a produced register value ([5], [21]). These
techniques require additional hardware support for
branch-misprediction recovery unless the recovery is
initiated only when the branch instruction becomes the
oldest instruction in flight. Other proposal uses RAM
bitmap arrays to identify all the successors of each
instruction in the issue queue [9]. A new design that
reduces the area cost for large issue queues was
proposed by K. Hsiao and C. Chen in [10].

The observation that many instructions already have
one or two ready source operands at dispatch time has
been used to reduce the load capacitance of the wakeup
tag bus in schedulers that use CAM schemes to wakeup;
consequently, the wakeup latency may be reduced ([6],
[9], [13]).

I.Kim and M. Lipasti proposed a hardware mechanism
that dynamically detects dependent pairs of instructions
and fuses them in order to be scheduled together [12].
So, the scheduling-loop latency (two cycles) is hidden
because the scheduling granularity has been increased. A
later work removes complexity from hardware and
enables more sophisticated fusing heuristics using
dynamic-translation software that becomes part of the
processor design [11]. Other related works use intensive
hardware to combine dependent operations [18] that are
issued speculatively or need static compiler support [3].

Several works use speculation to break the scheduling
loop. Stark et al. [20] proposed speculatively waking
instructions up by their grandparents. This proposal
allows pipelining the scheduling loop over two cycles.
The speculative wakeup of an instruction is confirmed
after their parents are selected. A false selected
instruction affects performance only if it prevents really
ready instructions from being selected for execution.
Brown et al. [2] proposed a speculative technique,
named Select-Free, which moves the selection logic off
the critical loop; this allows the scheduling loop to take
just one cycle. The technique allows all woken-up
instructions broadcasting the tags into the issue queue in
the following cycle, even though some of them may have
not been selected for execution yet. Contention for issue
ports can produce the misspeculated wakeup of a chain
of dependent instructions. Therefore, the availability of
source operands of each issued instruction are checked
before execution stage. Both proposals allow
back-to-back scheduling of dependent instructions.
Focusing in the SW model, we have measured, in
average, a 7.6% of committed instructions that are
falsely selected, which unnecessarily utilize the selection
logic. In the Select-Free model happens something
similar. In this case, measures show, in average, a 3.4%
of committed instructions that have to be re-scheduled.
Obviously, re-scheduled instructions incurs in a
unnecessary utilization of both the selection logic and
the register file.

VII. CONCLUSIONS

In this paper, we have proposed two non-speculative
enhancements (E and E-F) for a scheduling logic
pipelined over two cycles. These enhancements try to

tolerate the latency of the scheduling loop when there is
not enough available ILP. In order to do this, our
proposals compute in advance which instructions will be
woken up by all one-cycle execution-latency instructions
that are currently competing for selection. This
pre-computed group of instructions can compete for
selection, once that all previous one-cycle
execution-latency instructions, which are currently
competing for selection, have been selected. Moreover,
we have improved the base enhancement (E) using
instruction fusing (E-F).

Our evaluations have shown that E and E-F models
perform, in average, within a 2% and 2.6% of an ideal
(unpipelined) scheduler, respectively. In comparison
with baseline model B (scheduling loop pipelined over
two cycles), E and E-F increase, in average, performance
a 7,9% and a 8.6%, respectively. Also, E and E-F
perform, in average, slightly better than the two
previously-proposed speculative schedulers (Select Free
and Speculative Wakeup).

REFERENCES
[1] Y. Bai; R. I. Bahar. A dynamically reconfigurable mixed
in-order/out-of-order issue queue for power-aware microprocessors,
Annual Symposium on VLSI, p. 139-146, 2003.
[2] M. Brown et al. Select-Free Instruction Scheduling Logic.
Micro-2001, p. 204-213.
[3] A. Bracy et al. Dataflow Mini-Graphs: Amplifying Superscalar
Capacity and Bandwidth. Micro-2004, p.18-29.
[4] D.C. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” UW Madison Computer Science T. R. #1342, June 1997.
[5] R. Canal and A. González. A Low-Complexity Issue Logic.
ICS-2000, p. 327-335.
[6] D. Ernst and T.M. Austin. Efficient dynamic scheduling through
tag elimination. ISCA-2002, p.37-46
[7] D. Ernst et al. Cyclone: A Broadcast-Free Dynamic Instruction
Scheduler with Selective Replay. ISCA-2003, p. 253-262.
[8] J.A. Farrel and T.C Fischer. Issue Logic for a 600 Mhz
Out-of-order Execution Microprocessor. Journal of Solid-State
Circuits, Vol 33(5), pp 707-712, 1998.
[9] M. Goshima et al.. A high-speed dynamic instruction scheduling
scheme for superscalar processors. Micro-2001, p. 225-236.
[10]K. S. Hsiao and C.H. Chen. An Efficient Wakeup Design for
Energy Reduction in High-Performance Superscalar Processors. Conf.
on Computing Frontiers, 2005, p. 353-360.
[11]S. Hu et al. An Approach for Implementing Efficient Superscalar
CISC Processors. HPCA-2006, p. 40-51.
[12]I. Kim and M. H. Lipasti, Macro-op Scheduling: Relaxing
Scheduling Loop Constraints. Micro-2003, p. 277-288.
[13]I. Kim and M. H. Lipasti. Half-Price Architecture. Int. Symp. on
Computer Architecture. 2003, p. 28-38.
[14]P. Michaud and A. Seznec. Data-flow prescheduling for large
instruction windows in out-of-order processors. HPCA-2001, p. 27-36.
[15]S. Önder and R. Gupta. Instruction Wake-up in Wide issue
superscalars. European Conf. on Parallel Processing, 2001, p. 418-427.
[16]S.Palacharla et al. Quantifying the complexity of superscalar
processors. T.R. University of Wisconsin-Madison. Nov 1996.
[17]E. Perelman et al.. Picking Statistically Valid and Early Simulation
Points. PACT-2003, p. 244-255.
[18]P. G. Sassone and D. Scott Wills. Dynamic Strands: Collapsing
Speculative Dependence Chains for Reducing Pipeline
Communication. Micro-2004, p. 7-17
[19]T. Sherwood et al., “Automatically Characterizing Large Scale
Program Behaviour,” in Proc. of ASPLOS, Oct. 2002, p. 45-57.
[20]J. Stark et al. On pipelining dynamic instruction scheduling logic.
Micro-2000, p. 204-213.
[21]S. Weiss and J.E. Smith. Instruction issue logic in pipelined
supercomputers. IEEE Trans. on Computers, 33: p.1013-1022, Nov.84.

