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Members of the European Network of Excellence on High Performance Embedded Architectures and Compilers (HiPEAC)

Received 13 October 2005; received in revised form 7 June 2006; accepted 11 September 2006
Available online 15 November 2006
Abstract

Value speculation is a speculative technique proposed to reduce the execution time of programs. It relies on a predictor,
a checker and a recovery mechanism. The predictor predicts the result of an instruction in order to issue speculatively its
dependent instructions, the checker checks the prediction after issuing the predicted instruction, and the recovery mecha-
nism deals with mispredictions in order to maintain program correctness.

Previous works on value speculation have considered that the instructions dependent on a predicted instruction can be
issued before issuing the predicted instruction (non-delayed issue policy). In this work we propose delaying the issue time of
the instructions dependent on a value-predicted instruction until issuing the value-predicted instruction (delayed issue pol-
icy). Although the potential performance benefits of the delayed issue policy are smaller than that of the non-delayed issue
policy, the recovery mechanism required by the delayed issue policy is simpler than the recovery mechanism required by the
non-delayed issue policy.

We have evaluated both issue policies in the context of load-value prediction by means of address prediction in order to
determine in which scenarios the performance of the delayed issue policy is competitive with that of the non-delayed issue
policy. Our results show that the delayed policy is a cost-effective alternative to the non-delayed policy, especially for real-
istic issue-queue sizes.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Value speculation is a speculative technique that
has been proposed to reduce the execution time of
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programs [1,7]. Value speculation relies on predict-
ing an instruction result and forwarding the predic-
tion to its dependent instructions in order to
speculatively issue them. Later, the prediction must
be checked. Prediction check is performed after issu-
ing the predicted instruction. On a correct predic-
tion, the speculative results turn out to be valid;
otherwise, a recovery mechanism must re-issue
the speculatively issued instructions in order to
.
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maintain program correctness because they have
consumed an incorrect input value.

Previous works on value speculation (e.g., [3–6])
allow issuing instructions dependent on the pre-
dicted instruction before issuing the predicted
instruction (through this paper, this issue policy is
named non-delayed).

In this work we propose delaying the issue time
of the instructions dependent on a value-predicted
instruction until issuing the value-predicted instruc-
tion (delayed policy). Although the delayed policy
has smaller potential performance benefits than
the non-delayed one, the delayed alternative allows
using a simpler recovery mechanism than the non-

delayed one. While the non-delayed issue policy
requires a generic recovery mechanism, the delayed

issue policy may also use a simpler recovery mecha-
nism specific for a speculative technique named
latency prediction (Section 2.2). Consequently, the
delayed policy may be a cost-effective alternative
to the non-delayed one.

Our evaluations are focused in the scope of load-
value prediction by means of address prediction
and speculative memory accesses. We consider
load-value prediction using both issue policies
(non-delayed issue policy and delayed issue policy).
In both cases, processor front-end predicts the
effective addresses computed by load instructions
and triggers speculative memory accesses. The
models differ in the issue time of the dependent
instructions. In the first case, instructions depen-
dent on a predicted load instruction may be specu-
latively issued as soon as the dependent instructions
enter in the Issue Queue (IQ), that is, may be issued
before issuing the predicted load instruction they
depend on. In the second case, instructions depen-
dent on the predicted load instruction are specula-
tively issued after issuing the predicted load
instruction.

Our results show that, in certain scenarios, the
performance of the delayed policy combined with
a recovery mechanism specific for latency mispredic-
tions is competitive with the performance of the
non-delayed policy with the generic recovery
mechanism.

The contributions of this work are: (a) we pro-
pose delaying the issue time of the instructions
dependent on a value-predicted instruction until
issuing the value-predicted instruction in order to
allow the usage of a simpler recovery mechanism,
(b) we evaluate this proposal in the scope of load-
value prediction by means of address prediction.
This paper is organized as follows. Section 2
describes some background for this work. Section
3 details the characteristics of the issue policies con-
sidered in this work. Section 4 describes the evalu-
ated processor models. Section 5 presents the
evaluation of the issue policies. Section 6 reports
some related works and Section 7 summarizes the
conclusions of this work.

2. Background

This section describes some concepts used
through this paper.

2.1. Value speculation

Value speculation is a speculative technique that
relies on predicting an instruction result and for-
warding the prediction to its dependent instructions
in order to speculatively issue them [1,7].

Predictions are performed early in the pipeline
(concurrently with instruction fetch or with instruc-
tion decode) in order to allow propagating them to
the dependent instructions before these instructions
are inserted into the IQ.

Instructions with ready operands (either specula-
tively or non-speculatively), compete to be issued.
Consequently, an instruction with speculative oper-
ands may be issued before issuing the predicted
instruction (we refer to this issue policy as non-

delayed).
When a predicted instruction is issued, its predic-

tion is checked. On a correct prediction, the specu-
latively issued instructions dependent on the
prediction had consumed correct input data and
their results are considered as valid. However, on
a wrong prediction, they had consumed incorrect
input data; then, a recovery mechanism must re-
issue these instructions.

2.2. Latency prediction

Latency prediction is a speculative technique
applied by several superscalar processors (for
instance, Alpha 21264 processor [8] and Pentium 4
processor [9]) to deal with instructions which exact
latency is unknown at issue time. For instance, the
latency of a load instruction depends on the mem-
ory-hierarchy level where data is located and on
resource constraints. Consequently, the exact
latency of a load instruction is known several cycles
after issuing the load instruction.
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To schedule the instructions dependent on such
instructions the scheduler has two options. On one
hand, the scheduler may delay the scheduling of
the dependent instructions until knowing the exact
latency of the unknown-latency instruction; how-
ever, this option increases the effective latency of
the unknown-latency instruction and decreases pro-
cessor performance [10,11]. On the other hand, the
scheduler may predict the latency of the unknown-
latency instruction, issue it, and speculatively sche-
dule its dependent instructions accordingly. Several
cycles after issuing the latency-predicted instruction,
its latency prediction is checked. On a correct
latency prediction, the issued dependent instruc-
tions had consumed a correct input data; however,
on an incorrect latency prediction, the issued depen-
dent instructions had consumed an incorrect input
data and the recovery mechanism must re-issue
them.

To schedule instructions dependent on load
instructions, Alpha 21264 and Pentium 4 predict
whether a load instruction hits first level cache.
Then, the scheduler schedules the dependent
instructions according to this prediction.

There are two implicit characteristics of latency
prediction that are relevant to this work: (a) the
instructions dependent on the latency-predicted
instruction are issued after issuing the latency-pre-
dicted instruction (that is, it uses the delayed issue
policy) and (b) the number of cycles from issuing
a latency-predicted instruction until knowing the
correctness of the latency prediction is fixed.

2.3. Recovery mechanisms

Processors that implement speculative execution
must deal with wrong predictions. The mechanism
responsible for maintaining program correctness
despite mispredictions is the recovery mechanism.
There are several alternatives to implement the
recovery mechanism varying performance impact
and hardware cost.

2.3.1. Re-fetch versus re-issue
On re-fetch mechanisms, the instructions younger

than the mispredicted instruction are flushed-out
from the pipeline and the fetch unit is redirected
to the next instruction after the mispredicted
instruction.

On re-issue mechanisms, the instructions are not
read again from memory because the mechanism
keeps enough information to re-execute them.
In the scope of branch prediction, a wrong pre-
diction introduces instructions from a wrong execu-
tion path in the pipeline. After detecting the
misprediction, these instructions must be discarded
and a new execution path must be fetched. Conse-
quently, branch mispredictions are dealt with re-

fetch recovery mechanisms. Some researchers have
improved the recovery mechanisms for branch mis-
predictions by considering the existence of control-
independent instructions (e.g. [12,13]).

In the scope of value speculation, both re-fetch

and re-issue recovery mechanisms may deal with
value mispredictions because, unless branch mispre-
dictions are involved, the execution path remains
unaltered. However, due to the large performance
cost of re-fetching (and re-decoding, . . .) the instruc-
tions younger than the mispredicted instruction, re-

issue recovery mechanisms are the selected choice to
deal with value mispredictions [14].

re-issue mechanisms are classified considering
which storage structure keeps the speculatively
issued instructions: the IQ or a specific storage
structure.

Some proposed recovery mechanisms keep the
speculatively issued instructions in the IQ both in
the scope of value speculation [15–18] and in the
scope of latency prediction [8]. However, keeping
these instructions in the IQ reduces its effective size
and may harm processor performance.

Some researchers have proposed recovery mech-
anisms specific for the scope of latency prediction.
Instead of keeping the speculatively issued instruc-
tions in IQ entries, these mechanisms keep these
instructions in devoted structures (the Recovery
Buffer [19] or the Slice Processing Unit [20]). More-
over, recovering from latency mispredictions
requires a simpler management than recovering
from general value mispredictions.

2.3.2. Selective versus non-selective

The re-issue recovery mechanisms can be classi-
fied either as selective or as non-selective. On selec-

tive recovery mechanisms, only the speculatively
issued instructions dependent on the misprediction
are re-issued; on non-selective mechanisms, some
independent instructions may also be re-issued.

The selective recovery mechanisms must use a
dependence tracking mechanism to detect the
instructions to be re-issued. Next subsection
describes several alternatives to implement it.

In our evaluations we use selective re-issue recov-
ery mechanisms.
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2.4. Verification mechanisms

Processors that implement value speculation use
a verification mechanism for propagating to its
dependent instructions that an operand has become
either speculative or non-speculative. This mecha-
nism influences on:

– branch-resolution delay because we use non-
speculative branch resolution [21], that is, the
operands of a branch instruction must be verified
before resolving the branch instruction,

– the effective capacity of the IQ on processors that
keep the speculatively issued instructions in the
IQ until verifying their operands,

– the re-issue time of the instructions dependent on
a misprediction.

2.4.1. Keeping the speculatively issued instructions
in the IQ

In the literature, there are several alternatives to
perform the verification process. Sato [16] assumed
an RRU-based processor [22] (the ROB and the
IQ are grouped into the same structure: the
RUU). He used a mechanism where no specific
hardware is devoted to propagating the verifications
because instructions are implicitly verified as soon
as they reach the ROB’s head entry; we name this
mechanism implicit verification on commit. The same
approach was used in [18] in the context of memory
communication (by predicting store-load depen-
dences). Rychlik et al. [23] proposed a mechanism
that uses the data-flow graph to propagate verifica-
tions serially, that is, the verification of an instruc-
tion is propagated only to its directly dependent
instructions. Sazeides [17] also used the data-flow
graph to propagate verifications; he assumed that
they can traverse the flow graph on a single cycle,
regardless the number of graph levels.

Morancho et al. [24] proposed a verification
mechanism named Verification Issue Queue (VIQ).
The VIQ allows the processor verifying the instruc-
tions before reaching the head entry of the ROB.
The VIQ is fed with a verification-flow graph.
Attending to the verification-flow graph used, they
consider serial verification and enhanced verification
(on a single cycle, the verification of an instruction is
propagated to its directly and to its indirectly depen-
dent instructions).

Fig. 1 depicts a simplified scheme of the commu-
nication between the IQ and the VIQ. After being
renamed, all instructions are inserted in both struc-
tures. Each cycle, the IQ notifies to the VIQ which
instructions have been issued; the VIQ also receives
the prediction checks. The VIQ propagates check
results through the verification flow graph. As the
graph is being traversed, the VIQ notifies which
instructions can be extracted from the IQ and which
ones must be re-issued due to be dependent on a
misprediction. The hardware cost of the VIQ is sim-
ilar to the hardware cost of the IQ because the VIQ
operates at the same frequency that the IQ and the
VIQ is implemented using a matrix that has the
same structure that the matrix that implements the
IQ [24].
2.4.2. Keeping the speculatively issued instructions in
a devoted structure: the Recovery Buffer

Fig. 2 depicts the placement of the Recovery Buf-
fer (RB) in the processor pipeline. As soon as an
instruction is issued, it is extracted from the IQ
and it is inserted in the RB. After a fixed number
of cycles, issued instructions are classified either as
not dependent on mispredictions or as dependent
on mispredictions. This classification is performed
in issue-order using a register scoreboard. Instruc-
tions not dependent on mispredictions are dis-
carded; instructions dependent on mispredictions
are re-issued from the RB.

The RB is implemented using a two-level buffer
structure. The first level is a FIFO buffer; its size
depends on misprediction-detection latency. In
[19], the RB was proposed to deal with L1 misses:
while instructions not dependent on L1 misses were
extracted from the RB, issued instructions depen-
dent on L1 misses were re-issued from the RB.
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The verification is performed by a register score-
board as instructions leave the first-level buffer.

3. Policies for issuing instructions speculatively

In this work we consider two policies for issuing
instructions dependent on a instruction which result
has been predicted: non-delayed and delayed. In the
first case, a dependent instruction can be specula-
tively issued as soon as it enters into the IQ. This
policy has been used by previous works on value
speculation (e.g., [3,5,6]). In the second case, the
speculative issue is delayed until issuing the pre-
dicted instruction it depends on. This policy is also
used by the speculative technique named latency
prediction.

As our evaluation focuses on load-value predic-
tion by means of address prediction, Fig. 3 shows
the execution of a value-predicted load instruction
and a dependent instruction using both alternatives.
In both examples we assume that the speculative
memory access has been completed before inserting
its dependent instruction in the IQ. Then, in the
examples, the dependent instruction reads the spec-
ulative data from register file.

Fig. 3(a) shows the execution of a value-predicted
load instruction and a dependent instruction using
the non-delayed policy. The instruction dependent
on the value-predicted load instruction is specula-
tively issued as soon as it is inserted in the IQ
because the speculative memory access has been
completed. The value-predicted load instruction is
issued when its source operand is available.
load r2

↓

0(r1)
F F Dec / Ren / Insert IQ IQ IQ R @

pred pred LAQ m m wr check

add r3 r2, r2 F F Dec / Ren / Insert IQ IQ R exe ...

load r2 0(r1)
F F Dec / Ren / Insert IQ IQ IQ R @

pred pred LAQ m m wr check

add r3 r2, r2 F F Dec / Ren / Insert IQ IQ IQ IQ R

(a) Non-delayed speculative issue

(b) Delayed speculative issue

Fig. 3. Execution of a predicted load instruction and the
speculative issue of a dependent instruction: (a) non-delayed issue
policy (b) delayed issue policy. We assume a two-cycle first-level
cache latency. Actions related to the speculative execution have
been shaded. Legend: F (fetch), Dec. (decode), Ren. (rename), IQ
(issue queue), R (register read), @ (effective-address computa-
tion), pred. (effective-address prediction), LAQ (load-address
queue), m (memory access), wr (write), check (address-prediction
check).
Fig. 3(b) shows the execution of a value-pre-
dicted load instruction and a dependent instruction
using the delayed policy. The dependent instruction
is issued after issuing the value-predicted load
instruction with a load-use delay of just one cycle.

In these examples, the delayed policy delays the
issuing of the dependent instructions two cycles with
respect to the non-delayed policy.

3.1. Implications of the issue policy on the issue

logic and the recovery mechanism

In both cases, we use a selective re-issue recovery
mechanism to deal with mispredictions. However,
the implementations of the recovery mechanisms
will differ.

3.1.1. Non-delayed issue policy

The recovery mechanism for the value-specula-
tive processor with the non-delayed issue policy is
a generic recovery mechanism for value speculation.
This mechanism keeps the speculatively issued
instructions in the IQ until they become non
speculative.

The implementation of the non-delayed issue pol-
icy with the generic recovery mechanism requires
several modifications to the issue logic. After pre-
dicting an instruction result, processor front-end
must insert the predicted instruction into the
wakeup logic with its output register tagged as
available. This allows issuing its dependent instruc-
tions as soon as they enter into the IQ.

As the speculatively issued instructions are kept
into the IQ, the IQ must identify which entries cor-
respond to instructions issued speculatively. These
entries can not be visible to the select logic of the
IQ and can not be freed until verifying the
instruction.

An IQ entry can be freed only when the verifica-
tion mechanism allows it. In Section 2.4 we have
shown several possible implementations; however,
as we will show in Section 4.2.1, the performance
benefits of value prediction heavily depend on the
verification mechanism. We assume the VIQ verifi-
cation mechanism, which is implemented using an
structure similar to the IQ.

3.1.2. Delayed issue policy

As the delayed issue policy is also used by the
speculative technique named latency prediction,
value-speculative processors with delayed issue pol-
icy may use a recovery mechanism specific for
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latency prediction: the Recovery Buffer [19]. This
mechanism keeps the speculatively issued instruc-
tions in a dedicated structure. Moreover, the verifi-
cation process is performed using a register
scoreboard.

The implementation of the delayed issue policy
also requires some modifications to the issue logic.

After predicting an instruction result, processor
front-end must notify the new latency of the pre-
dicted instruction. This allows the wake-up logic
to wake-up its dependent instructions according to
the predicted latency. As soon as an instruction is
issued, it can be extracted from the IQ.

The IQ must maintain a set of dependence vec-
tors to track the speculatively issued instructions
dependent on a predicted instruction. These vectors
are needed to stop issuing instructions dependent on
a mispredicted instruction when a misprediction is
detected.

Although the delayed policy is more restrictive
than the non-delayed policy, we are interested in
evaluating if the delayed policy is a cost-effective
alternative to the non-delayed policy. Our interest
is initiated because value speculation with the
delayed issue policy may use a simpler recovery
mechanism than value speculation with the non-

delayed issue policy.

4. Processor models

This section describes the main characteristics of
the processor models used in this work: a non-value-
speculative processor and a value-speculative
processor.

4.1. Non-value-speculative processor

Our non-value-speculative processor model (for
short, non-speculative processor) is similar to exist-
ing superscalar processors. Its block organization is
depicted in Fig. 4 (solid lines and hollow boxes).

Fig. 5 shows the processor pipeline related to
both non-speculative and speculative processors.
Some stages may take several processor cycles.

Table 1 details the characteristics of the proces-
sors used in this work: a 4-way processor (resembles
the Alpha 21264 processor) and a 8-way processor.
In our evaluations we used oracle memory disam-
biguation. In the literature [25] have been proposed
memory-dependence predictors that exhibit nearly
optimal performance in processors similar to the
ones described in Table 1.
4.2. Value-speculative processors

The block organization of our value-speculative
processor model (for short, speculative processor)
is also depicted in Fig. 4 (all lines and boxes). Its
main differences with respect to the non-speculative
organization are detailed in the following list:

– Concurrently with instruction fetch, the address
predictor accesses prediction tables to obtain
address predictions for the load instructions
being fetched. We assume an address predictor
with the same latency as the fetch engine and
immediate update of the prediction tables.

All the evaluations of value-speculative proces-
sors performed in this work use an Hybrid Address
Predictor made up of a conventional Stride-
Address Predictor, a Context-Address Predictor
[3] and a bimodal selector. We use a configuration
of the previous address predictor with large pre-
diction tables: the Stride-Address Predictor has a
16 K-entry Address Table and the Context-
Address Predictor has 16 K-entry Value History
Table and Value Prediction Table. Using this con-
figuration, we stress all the mechanisms specific to
address prediction and value speculation.

Table 2 presents the percent of committed load
instructions, the coverage (percent of loads cor-
rectly predicted among all load instructions) and
the accuracy (percent of correct predictions
among all predictions) obtained by the address
predictor on SPEC95-INT benchmarks.



Table 1
Processor configurations used in this work

4 way 8 way

Fetch/decode width 4 instrs./cycle 8 instrs./cycle
Fetch-engine latency 2 cycles

Branch prediction 1 target/cycle 2 targets/cycle
215-entry local predictor, 215-entry global predictor,
32-entry RAS, 1024-entry, 4-way BTB
Penalty: 6 cyc. + fetch-engine latency

Reorder Buffer 128 entries 256 entries
Load-Address Queue 64 entries 128 entries

Issue width 4 INT + 2 FP 8 INT + 4 FP
Functional units and latencies

INT ALUs (1 cycle) 4 units (2 @ adders) 8 units (4 @ adders)
INT mul/div (3/20 c.) 1 u. 2 u.
FP ALUS (4 c.) 1 u. 2 u.
FP mul/div (4/12 c.) 1 u. 2 u.
RW-Memory ports 2 u. 4 u.

First-level caches Separated, 64 KB, direct-mapped, write back, write allocate, 2-cycle hit
Second-level cache Unified, 1 MB direct-mapped, 12-cycle hit latency
Main memory 80-cycle latency
Load-latency prediction Oracle
Memory disambiguation Oracle
Commit width 8 instrs./cycle 16 instrs./cycle

Table 2
Benchmark characterization: percent of committed load instruc-
tions, coverage and accuracy obtained by the address predictor
on SPEC95-INT benchmarks

Benchmarks % Loads Coverage Accuracy

go 28.8 59.2 91.6
m88ksim 24.6 96.3 97.8
gcc 26.8 83.3 95.0
compress 18.7 76.2 96.2
li 25.5 85.0 93.8
ijpeg 18.1 75.2 96.0
perl 22.5 99.0 99.3
vortex 25.6 90.7 95.5

Average 23.8 83.1 96.0
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– Each predicted load instruction is inserted in the
Load-Address Queue (LAQ) during the decode
stage. Moreover, the predicted address and the
mapping for the destination register must be
recorded in the related LAQ entry. After that,
the speculative memory access can be issued from
the LAQ. We assume that predicted effective
addresses are inserted into the LAQ during the
first decode stage.

– The number of cache accesses that can be per-
formed every cycle remains unchanged with
respect to the non-speculative processor. An arbi-
ter prioritizes memory access initiated from the
IQ respect memory accesses initiated from the
LAQ.

– A functional unit must check the correctness of
each prediction. The functional unit that per-
forms this checking obtains the predicted effec-
tive address from the LAQ. This checking can
be performed concurrently with the effective-
address computation [26].

– The recovery mechanism depends on the issue
policy. Speculative processors using the non-

delayed issue policy (for short, non-delayed spec-
ulative processors) implement a generic recovery
mechanism. Speculative processors using the
delayed issue policy (for short, delayed specula-
tive processors) implement a recovery mechanism
specific for latency misprediction.

The processor pipeline associated to the specula-
tive processor is the same as that of the non-specu-
lative processor. Fig. 6 shows the execution of
predicted load instructions; we have assumed that
both the fetch-engine and the cache-access latencies
are two cycles, and the availability of a free data-
cache port for the predicted memory access.
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Fig. 6. Execution of a predicted load instruction: (a) correctly
predicted and (b) incorrectly predicted. Actions related to the
speculative execution have been shaded.
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Fig. 6(a) depicts the execution of a correctly pre-
dicted load instruction. Fig. 6(b) describes the exe-
cution of a incorrectly predicted load instruction.
After the misprediction has been detected, memory
is accesses non-speculatively using the computed
effective address.
4.2.1. Influence of the verification mechanism in

non-delayed speculative processors

As a previous evaluation, we evaluate the sensi-
tivity of non-delayed speculative processors to the
verification mechanism (note that in delayed specu-
lative processors, the verification is performed by a
register scoreboard).

Fig. 7 shows the average performance of the non-
speculative processor and two non-delayed specula-
tive processors: the first one uses the implicit verifi-
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Fig. 7. IPC versus first-level cache latency in the non-speculative
processor and two non-delayed speculative processors (implicit
and serial verification).
cation [16], the second one uses the VIQ with the
serial verification [24]. In these previous evaluations
we assume that the number of IQ entries is equal to
the number of ROB entries.

We observe that the effectiveness of address pre-
diction and value speculation heavily depends on
the verification mechanism. In fact, in most cases,
the performance of the processor with implicit veri-
fication is worse than the performance of the non-
speculative processor.

Comparing both speculative processors, the use
of the VIQ improves the performance around 5%
(4-way processors) and from 13% to 17% (8-way
processors). The instructions that take advantage
of the faster verification process are the mispre-
dicted branch instructions, because they can be
resolved before reaching the ROB’s head-entry.

Moreover, current processors decouple the IQ
from the ROB. In this case, the verification mecha-
nism may be also used to decide when an instruction
can be extracted from the IQ. In this work, the VIQ
will be used in the non-delayed speculative proces-
sors to allow both extracting instructions from the
IQ and determining that the outcome of a branch
instruction is non-speculative in order to, eventu-
ally, initiate the branch-misprediction recovery.

5. Evaluation

To perform the evaluations we have derived a
simulator from the SimpleScalar 3.0 (Alpha ISA)
cycle-by-cycle simulator [27]. As a benchmark suite
we use the SPEC95-INT benchmarks and we simu-
late a representative execution interval [28]. We
present harmonic average results.

5.1. Delayed speculative processors versus non-

speculative processors

First, Fig. 8 shows the impact of the IQ size on
the performance of non-speculative processors and
delayed speculative processors; every graph connects
results for the same data-cache latency.

We observe that the evaluated speculative pro-
cessors outperform the non-speculative processors.
For instance, in 4-way processors with a 25-entry
IQ, the improvement ranges from 4% (2-cycle
latency) to 10% (4-cycle latency); in 8-way proces-
sors with a 50-entry IQ, the improvement ranges
from 6% (2-cycle latency) to 13% (4-cycle latency).

Furthermore, the performance of the evaluated
speculative processors is less sensitive to small IQ
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sizes. For instance, in 4-way processors with a 20-
entry IQ, non-speculative processors are below sat-
uration from 2% (2-cycle latency) to 4% (4-cycle
latency). However, speculative processors are below
saturation around 1%. Consequently, the smaller
the IQ size, the larger the performance impact of
address prediction with delayed issue policy.

Finally, the evaluated speculative processors tol-
erate cache latency better than non-speculative pro-
cessors. For instance, in 4-way processors with a
25-entry IQ, the performance degradation observed
when cache latency increases from two to four cycles
is 8% (non-speculative processors) and 3% (specula-
tive processors); in 8-way processors with a 50-entry
IQ, the degradation is 11% and 5% respectively.

5.2. Delayed versus non-delayed issue policy

Now, we compare the performance results
obtained using both issue policies. Fig. 9 shows
the average performance of non-speculative and
both delayed and non-delayed speculative proces-
sors. The horizontal axis stands for the first-level-
cache latency, both data and instruction caches,
and each bar is related to a processor model (non-
speculative, serial verification non-delayed issue,
enhanced-verification non-delayed issue and delayed

issue), vertical axis stands for the IPC. Each bar also
stacks results for several IQ sizes (Appendix A pre-
sents individual results for each benchmark).

For a cache latency and issue-width, all evaluated
speculative processors outperform the non-specula-
tive processors, independently of the IQ size. Then,
value speculation produces more performance bene-
fits than enlarging the IQ of a non-speculative
processor.
The IQ is one of the most critical structures of
superscalar processors. Consequently, we are inter-
ested in finding out the sensitivity of the evaluated
processors to the IQ size. Our results show that
while speculative processors with non-delayed issue
are able to exploit large IQ sizes, the performance
of processors with delayed issue almost saturates
using relatively small IQs. For instance, in 4-way
processors with a 20-entry IQ, while the perfor-
mance of delayed -issue speculative processors is
1% below saturation, the performance of non-

delayed speculative processors is around 3% below
saturation. For 8-way processors with a 40-entry
IQ, the results are similar.

This behavior can be explained because the
delayed speculative processor extracts the instruc-
tions from the IQ as soon as they are issued. How-
ever, a non-delayed speculative processor retains the
speculatively issued instructions into the IQ until
they become non speculative. Then, increasing IQ
size allows a non-delayed processor to reduce the
performance degradation due to keeping in the IQ
the speculatively issued instructions waiting for
verification.
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Comparing all speculative processors, our con-
clusions depend on the IQ size. In 4-way processors,
for small IQs (20 entries), the delayed processors
outperform about 2% non-delayed processors with
serial verification, and perform like non-delayed pro-
cessors with enhanced verification. For medium IQs
(25 entries) delayed processors outperform non-

delayed processors with serial verification about
0.5%, and present a performance degradation about
1% with respect to the non-delayed speculative pro-
cessors with enhanced verification. Finally, for large
IQs (64 entries), performance of delayed proces-
sors degrades about 0.5% and 2% with respect to
non-delayed processors with serial and enhanced ver-
ification respectively. As the IQ size increases, the
performance of non-delayed processors is less sensi-
tive to keeping issued instructions in the IQ.

In 8-way processors, for small IQs (40 entries),
delayed processors achieve similar performances to
non-delayed processors with serial verification, and
about 2% degradation with respect to the non-

delayed processors with enhanced verification. For
medium IQs (50 entries), performance degradation
is about 1% (serial) and 3% (enhanced). For large
IQs (128 entries), degradation reaches 2% and 4%
respectively.

The performance difference between both issue
policies is due to two factors. First, using the
delayed policy, the instructions dependent on a pre-
dicted load instruction are issued after issuing the
effective-address computation of the predicted load
instruction; however, this restriction is not present
using the non-delayed policy. Second, the recovery
mechanism used by delayed speculative processors
suffers an one-cycle penalty on each address
misprediction.

From these evaluations we conclude that the
delayed policy combined with the recovery mecha-
nism based on the Recovery Buffer is an attractive
alternative to the non-delayed policy, especially for
realistic IQ sizes.

6. Related works

Several works have presented evaluations of the
potential performance of address prediction and
speculative execution. Reinman and Calder [5] pre-
sented an evaluation of speculation techniques that
can be applied to load instructions: dependence pre-
diction, address prediction, value prediction and
memory renaming. They evaluated these techniques
over a micro-architecture that fetches up to eight
instructions per cycle, issues up to 16 instructions
per cycle, couples the IQ and the reorder buffer into
a 512-entry RUU, and has a first-level cache latency
of four cycles. They considered the non-delayed issue
policy and two recovery mechanisms: re-fetch, and
selective re-issue. In their evaluations, they varied
the address-predictor model (Last-Address Predic-
tor, Stride Address Predictor, Context Address Pre-
dictor and Hybrid Address Predictor), the
confidence estimator (conservative, conventional
and oracle) and the recovery mechanism (re-fetch
coupled with the conservative estimator, and re-
issue coupled with the conventional estimator);
however, the authors do not present the implemen-
tation of the recovery mechanisms. Their results
show that, using the re-fetch recovery mechanism,
the impact of address prediction is small (limited
by a 1.04 speed-up). However, using the re-issue
recovery mechanism, the impact is closer (up
to 1.10 speed-up) to that of the oracle predictor
(1.13).

Black et al. [4] evaluated the performance impact
of address prediction and speculative execution.
They assumed a realistic hybrid address predictor,
the non-delayed issue policy and the re-fetch recov-
ery mechanism. Their results showed the large
performance degradation due to address mispredic-
tions. Although the potential performance of
address prediction and speculative execution, they
concluded that its effectiveness will not be feasible
until overcoming the effects of address mispredic-
tions (by improving address prediction or by using
selective recovery mechanisms).

Bekerman et al. [3] evaluated the performance
impact of address prediction and speculative execu-
tion; they used a prediction model named Global-
Correlated Context-Address Predictor. They
focused on a prediction-table configuration and
analyzed the impact of pipelining address prediction
(prediction tables are not updated immediately).
They assumed the non-delayed issue policy and a
selective re-issue recovery mechanism. Their
results showed that pipelining address prediction
affects the performance impact of address predic-
tion, but this impact is still significant (in SPEC95-
INT benchmarks, speed-up decreases from 1.22 to
1.17).

Some works have proposed recovery mechanisms
that can be applied to speculative processors with
the non-delayed speculative issue. Akkary and Dris-
coll [2] proposed a two-level IQ. After decoding the
instructions, they are sent to the rename stage (and
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after that, they are inserted into the IQ) and they are
inserted into a trace buffer. Instructions are
removed from the IQ as soon as they have been
issued, but they remain in the trace buffer until they
have been committed. On a misprediction, the trace
buffer detects which instructions depend on the mis-
prediction, groups them, and sends these instruction
blocks to the rename stage.
Sato [6] also proposed a two-level structure: the
scheduling window and the instruction buffer. The
scheduling window is equivalent to the IQ; it holds
non-issued instructions. The instruction buffer is
equivalent to the RUU; it holds all the fetched
instructions that have not been committed. On a
misprediction, instructions are re-issued from the
instruction buffer. There is a key difference between
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the Recovery Buffer and this scheme. While the
Recovery Buffer is a simpler structure because it
records a valid scheduling of the instructions, Sato’s
proposal must replicate the scheduling logic in the
scheduling window and the instruction buffer. More-
over, due to the large size of the instruction buffer, its
select logic and its wake-up logic are pipelined.
7. Conclusions

We have evaluated two policies for issuing
instructions speculatively in value-speculative pro-
cessors: non-delayed and delayed. Although the
non-delayed policy has larger potential performance
benefits than the delayed policy, the delayed policy
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may be a cost-effective alternative to the non-delayed

one. While the first policy needs a conventional
recovery mechanism that puts additional pressure
on the IQ, the second policy may use a recovery
mechanism (the Recovery Buffer) that puts no addi-
tional pressure on the IQ.

We have evaluated both policies in the scope of
load-value prediction by means of address predic-
tion. Our results show that, depending on the num-
ber of IQ entries of the processor, value-speculative
processors with delayed speculative issue (and the
recovery mechanism based on the Recovery Buffer)
is a cost-effective alternative to value-speculative
processors with non-delayed speculative issue. The
best scenario for the delayed policy is processors
with a realistic number of IQ entries.
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Appendix A. Detailed results

Figs. 10 and 11 show individual results in 4-way
and 8-way processors respectively. We observe that,
almost for all benchmarks, given a cache latency, all
the speculative processors outperform all the non-
speculative processors, independently on the IQ size.

For the smallest evaluated IQ sizes (20-entry in 4-
way processors and 40-entry in 8-way processors),
the performance of delayed speculative processors
are competitive with the performance of non-delayed

speculative processors with serial verification. The
only exceptions are benchmarks perl (4-way and 8-
way processors) and m88ksim (8-way processors).
Both the two highest coverage and accuracy metrics
of our address predictor are achieved in these
benchmarks; consequently, the delayed issue policy
is losing many chances of executing speculatively
instructions dependent on correct predictions. Com-
paring the delayed processors versus the non-delayed

processors with enhanced verification, delayed pro-
cessors show performance degradations also in
benchmarks go, gcc and li (8-way processors); deg-
radation is about 5%, 3% and 3% respectively.

In benchmarks with higher IPC (li and ijpeg), we
observe the effect of increasing IQ size on the perfor-
mance of the evaluated processor models. As the
delayed issue policy allows the processor to extract
instructions from the IQ as soon they are issued,
enlarging the IQ in speculative delayed processors
presents smaller performance benefits than in the
remaining processor models (non-speculative, and
speculatives with the non-delayed issue policy).
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