Feasibility of QoS for SMT

Francisco J. Cazorla', Peter M.W. Knijnenburg?, Rizos Sakellariou?,

Enrique Fernandez?*, Alex Ramirez', and Mateo Valero!

! Universidad Politécnica de Cataluna
{fcazorla,aramirez,mateo}@ac.upc.es
2 LIACS, Leiden University, The Netherlands
peterk@liacs.nl
3 University of Manchester, UK
rizos@cs.man.ac.uk
4 Universidad de Las Palmas de Gran Canaria
efernandez@dis.ulpgc.es

Abstract. Since embedded systems require ever more compute power,
SMT processors are viable candidates for future high performance em-
bedded processors. However, SMTs exhibit unpredictable performance
due to uncontrolled interaction of threads. Hence, the SMT hardware
needs to be adapted in order to meet (soft) real time constraints. We
show by a simple policy that the OS can exercise control over the exe-
cution of a thread which is required for real time constraints.

1 Introduction

To deal with real time constraints, current embedded processors are usually
simple in-order processors with no speculation capabilities. However, embedded
systems are required to host more and more complex applications and have
higher and higher data throughput rates. Therefore, future embedded processors
will resemble current high performance processors. Simultaneous Multithreaded
(SMT) architectures [5][6] are viable candidates for future high performance
embedded processors, because of their good cost/performance trade-off [2]. In
an SMT, several threads are running together, sharing resources at the micro-
architectural level, in order to increase throughput. A fetch policy decides from
which threads instructions are fetched, thereby implicitly determining the way
processor resources, like rename registers or IQ entries, are allocated to the
threads. However, with current policies the performance of a thread in a workload
is unpredictable. This poses problems for the suitability of SMT processors in
the context of (soft) real-time systems.

The key issue is that in the traditional collaboration between OS and SMT,
the OS only assembles the workload while it is the processor that decides how
to execute this workload, implicitly by means of its fetch policy. Hence, part of
the traditional responsibility of the OS has “disappeared” into the processor.
One consequence is that the OS may not be able to guarantee time constraints
even though the processor has sufficient resources to do so. To deal with this

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 535-540, 2004.
© Springer-Verlag Berlin Heidelberg 2004

536 F.J. Cazorla et al.

situation, the OS should be able to exercise more control over how threads are
executed and how they share the processor’s internal resources.

In this paper, we discuss our philosophy behind a novel collaboration be-
tween OS and SMT in which the SMT processor provides ‘levers’ through which
the OS can fine tune the internal operation of the processor to achieve certain
requirements. We want to reserve resources inside the SMT processor in order to
guarantee certain requirements for executing a workload. We show the feasibility
of this approach by a simple parameterized mechanism that assigns fetch slots
and instruction and load queue entries to a High Priority Thread. This, in turn,
is a first step toward enabling the OS to execute a thread at a given percentage
of its full speed and thus enabling the use of out-of-order, high performance SMT
processor in embedded environments.

This paper is structured as follows. In Section 2 we describe our novel ap-
proach to the collaboration between OS and SMT. In Section 3 we discuss a
simple mechanism to enable such collaboration. We discuss related work in Sec-
tion 4. Finally, Section 5 is devoted to conclusions and future directions.

2 QoS: A Novel Collaboration Between OS and SMT

In this paper, we approach OS/SMT collaboration as Quality of Service (QoS)
management. This approach has been inspired by QoS in networks. In an SMT
resources can be reserved for threads guaranteeing a required performance. We
observe that on an SMT processor, each thread reaches a certain percentage of
the speed it would achieve when running alone on the machine. Hence, for a
given workload consisting of N applications and a given instruction fetch policy,
these fractions give rise to a point in an N-dimensional space, called the QoS
space. For example, Figure 1(a) shows the QoS space for two threads, eon and
twolf, as could be obtained for the Pentium4 or the Power5. In this figure, both
a- and y-axis span from 0 to 100%. We have used two fetch policies: icount [5)
and flush++ [1]. Theoretically it is possible to reach any point in the shaded
area below these points by judiciously inserting empty fetch cycles. Hence, this
shaded area is called the reachable part of the space for the given fetch policies. In
Figure 1(b), the dashed curve indicates points that intuitively could be reached
using some fetch and resource allocation policy. Obviously, by assigning all fetch
slots and resources to one thread, we reach 100% of its full speed, that is, the
speed it would reach when run alone. Conversely, it is impossible to reach 100% of
the speed of each application at the same time since they have to share resources.

Each point or area (set of points) in the reachable subspace entails a number
of properties of the execution of the applications: maximum throughput; fairness;
real-time constraints; power requirements; a guarantee, say 70%, of the maximum
IPC for a given thread; any combination of the above, etc. In other words, each
point or area in the space represents a solution to a QoS requirement. It is the
responsibility of the OS to select a workload and a QoS requirement and it is the
responsibility of the processor to provide the levers to enable the OS to pose such
requirements. To implement such levers, we add mechanisms to control how these

Feasibility of QoS for SMT 537

100 : PC=38100 m=mo = = faimess line
920 < icount “'@ ,
1 S, L
80 A flush++|, o — S, A
O _ o A \ ST Maximum througput
o 70 1 J— o T T , line. Slope = -0.32
2 60 1 % 60 - weighted
2 7 N
© 504 é P P \ *..| Maximum Weighted
2 40 2 0l L7 maximum Speedup line.
S 30 ! ' 8 - troughput on 'y Slope = -1
0] 20 g] . fairness line \
10 : ; 20 +[Reachable part \\
] 1] , \
O T T ‘\ \‘ /, \,
0 ‘ ‘ ‘ ‘ ©IPC=12
0 20 40 60 80 100 0 20 40 60 80 100
twolf relative IPC twolf relative IPC

Fig. 1. (a) QoS space for three fetch policies; (b) important QoS points and areas.

resources are actually shared. These mechanisms include prioritizing instruction
fetch for particular threads, reserving parts of the resources like instruction or
load/store queue entries, prioritizing issue, etc. The OS, knowing the needs of
applications, can exploit these levers to navigate through the QoS space.

In this paper, we present a first step toward this goal by studying the behavior
of threads when a certain number of resources is reserved for a High Priority
Thread (HPT). We show that such a simple mechanism is already capable of
influencing the relative speed of threads considerably and hence can cover the
QoS space to a great extent.

3 QoS by Resource Allocation

We use a standard 4-context SMT configuration. There are 6 integer, 3 FP, and
4 load/store functional units and 32-entry integer, load/store and FP IQs. There
are 320 physical registers shared by all threads. Each thread has its own 256-entry
reorder buffer. We use a separate 32K, 4-way data and instruction caches and a
unified 512KB 8-way L2 cache. The latency from L2 to L1 is 10 cycles, and from
memory to L2 100 cycles. We use an improved version of the SMTSIM simulator
provided by Tullsen [5]. We run 300 million most representative instructions for
each benchmark. We consider workloads of 2 threads that are of two different
types: threads that exhibit a high number of L2 misses of over 1% of the dynamic
load instructions, called Memory Bounded (MB) threads. These threads have a
low full speed. Secondly, threads that exhibit good memory behavior and have a
high full speed, called ILP threads. We consider 4 workloads in which the High
Priority Thread (HPT) is ILP or MB, and the Low Priority Thread (LPT) is
ILP or MB. The workloads are: gzip and bzip2 (ILP-ILP), gzip and twolf
(ILP-MB), twolf and bzip2 (MB-ILP), and twolf and vpr (MB-MB).

3.1 Static Resource Allocation

We statically reserve 0, 4, 8, ..., 32 entries in the IQ and LSQ for the HPT. The
remaining entries are devoted to the LPT. Moreover, we prioritize the instruc-

538 F.J. Cazorla et al.

tion fetch and issue for the HPT: in each cycle, we first fetch/issue instructions
from the HPT. If there are fetch opportunities left, then instructions from the
LPT are fetched/issued. There are more resources in an SMT processor that
are shared between threads, most notably the rename registers and the L1 and
L2 caches. We have restricted attention to IQ and LSQ entries because these
shared resources most directly determine which instructions from which thread
are executed.

3.2 Results

We show the resulting QoS space for varying numbers of assigned resources
in Figures 2(a) through 5(a). We also show the points obtained from the round
robin (RR), icount (IC), and flush fetch policies for comparison. We immediately
observe that our parameterized mechanism is capable of covering a large part
of the reachable space by tuning its parameter. In contrast, the points reached
by the three standard fetch policies show no coherent picture. For the ILP-ILP
and MB-MB workloads, they reach points that are quite close together. For the
other workloads, there is considerable difference and their relative position in
the space changes. This shows that standard fetch policies provide little control
over the execution of threads.

We show the resulting IPC values in Figure 2(b) through 5(b). We also show
IPC obtained from the standard policies icount and flush for comparison.

ILP-ILP. Both threads have a high throughput and do not occupy IQs for a
long time. As a result, reserving a number of these entries for the HPT and
moreover prioritizing its fetch, quickly produces a situation in which the HPT
dominates the processor and its speed comes close to its full speed. The total
throughput is about the same as for icount (except the cases of 0 and 32) which
means that what we take from one thread can successfully be used by the other.

ILP-MB. When the LPT thread misses in the L2, it tends to occupy resources
for a long time which has an adverse effect on the speed of the other thread.
Therefore, reserving resources for the HPT that is ILP causes its speed to sharply
increase. As a result, the total throughput can be larger than for icount. flush
needs to re-fetch and re-issue all flushed instructions, degrading its performance.
The speed of the LPT does not degrade fast since it suffers many L2 misses and
thus cannot use many resources.

MB-ILP. This case is the opposite to the previous one. Given that since the
total throughput in comes largely from the LPT that is ILP, when it is denied
many resources, its speed degrades fast and total throughput is degraded as well.

MB-MB. Throughput shows a flat curve that is about the same as for the icount
and flush fetch policies as was the case for the ILP-ILP workload. Resources taken
from one thread can effectively used by the other thread.

We conclude that by controlling resource allocation we can navigate through
the QoS space and bias the execution of a workload to a prioritized thread. At
the same time, we still reach considerable throughput for the LPT. Hence, our
proposal to provide QoS in an SMT by means of resource allocation is a feasible
approach.

100

LﬂoX
[)
o A
a 754
g
5 *0 4 a o
a O7|as8 12 B
S X 16 ° 20
P
g o5 f|2 24 o 28
° 32 & RR
olc A FLUSH
0 + + T
0 25 50 75 100

(LPT) bzip2 relative IPC

Fig. 2. (a) QoS space for ILP-ILP workload;

Feasibility of QoS for SMT 539

0&— T T

0 4 8 12 16 20 24 28 32
1Q and LSQ entries reserved for HPT

(b) IPC values and overall throughput.

100 7
o ——HPT IPC
Ao 6 —B=LPTSIPC |
o X —— Throughput
75
= A 5 | —ICOUNT
2
s oA 04 _______
5 50 c
5 3
2 om
- 24
£ o)
1
0 ‘ ‘ 0# —————
o 25 50 75 100 0 4 8 12 16 20 24 28 32

(LPT) twolf relative IPC

Fig. 3. (a) QoS space for ILP-MB workload;

1Q and LSQ entries reserved for HPT

(b) IPC values and overall throughput.

100 7
DAO
° 61
o A
& 75 0 5 |
2
g .
[[
- 50 -9
[=]
H
£
525
1 3
0 ‘ ‘ 0 —
o 25 50 75 100 0 4 8 12 16 20 24 28 32

(LPT) bzip2 relative IPC

Fig. 4. (a) QoS space for MB-ILP workload;

1Q and LSQ entries reserved for HPT

(b) IPC values and overall throughput.

100 7
6
3}
o 754 DAo 54
g X
H
= [
s 44
® m A o
= 50 s c
= 3]
[
2 L
I~ 21
o
T 251 A A a4
1
0 ‘ o
0 25 50 75 100 0 4 8 12 16 20 24 28 32

(LPT) vpr relative IPC

Fig. 5. (a) QoS space for MB-MB workload;

1Q and LSQ entries reserved for HPT

(b) IPC values and overall throughput.

540 F.J. Cazorla et al.

4 Related Work

To the best of our knowledge, there is not much work on real time constraints
for SMTs. In [4] the authors consider a way of mapping OS-level priorities onto
a modified icount policy that fetches depending on the priority of the threads.
However, this approach exploits the fetch policy, obtaining very limited control,
in contrast to our proposal. In [3] explicit static resource allocation is also studied
and the authors conclude that resource allocation has little effect on throughput.
However, they fail to recognize that the relative speed of threads does change
significantly, which is precisely the property that we exploit to provide QoS.

5 Conclusions

In this paper, we have approached the collaboration between OS and SMT
as Quality of Service management, where the SMT processor provides ‘levers’
through which the OS can fine tune the internal operation of the processor in
order to meet certain QoS requirements, expressed as points or areas in the QoS
space. We have shown, by evaluating a simple mechanism, that it is possible to
influence to a great extend the execution of a thread in a workload, so that the
OS can reach a large part of the QoS space. Hence, this mechanism is a first
step toward enabling high-performance SMT processors to deal with real-time
constraints and rendering them suitable for many types of embedded systems.

Acknowledgments

This work has been supported by the Ministry of Science and Technology of
Spain under contract TIC-2001-0995-C02-01, and grant FP-2001-2653 (Fran-
cisco J. Cazorla), the HIPEAC European Network of Excellence, an Intel fellow-
ship, and the EC IST programme (contract HPRI-CT-2001-00135). The authors
would like to thank Oliverio J. Santana, Ayose Falcon, and Fernando Latorre
for their work in the simulation tool.

References

1. F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Improving memory latency
aware fetch policies for SMT processors. In Proc. ISHPC, pages 70-85, 2003.

2. M. Levy. Multithreaded technologies disclosed at MPF. Microprocessor Report,
November 2003.

3. S. E. Raasch and S. K. Reinhardt. The impact of resource partitioning on SMT
processors. In Proc. PACT, pages 15-25, 2003.

4. A. Snavely, D.M. Tullsen, and G. Voelker. Symbiotic job scheduling with priorities
for a simultaneous multithreaded processor. In Proc. ASPLOS, pages 234-244, 2000.

5. D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting choice:
Instruction fetch and issue on an implementable simultaneous multithreading pro-
cessor. In Proc. ISCA, pages 191-202, 1996.

6. W. Yamamoto and M. Nemirovsky. Increasing superscalar performance through
multistreaming. In Proc. PACT, pages 49-58, 1995.

	1 Introduction
	2 QoS: A Novel Collaboration Between OS and SMT
	3 QoS by Resource Allocation
	3.1 Static Resource Allocation
	3.2 Results

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

