
Abstract

Clustered microarchitectures are an effective approach to
reducing the penalties caused by wire delays inside a chip.
Current superscalar processors have in fact a two-cluster
microarchitecture with a naive code partitioning
approach: integer instructions are allocated to one cluster
and floating-point instructions to the other. This
partitioning scheme is simple and results in no
communications between the two clusters (just through
memory) but it is in general far from optimal because the
workload is not evenly distributed most of the time. In fact,
when the processor is running integer programs, the
workload is extremely unbalanced since the FP cluster is
not used at all. In this work we investigate run-time
mechanisms that dynamically distribute the instructions of
a program among these two clusters. By optimizing the
trade-off between inter-cluster communication penalty and
workload balance, the proposed schemes can achieve an
average speed-up of 36% for the SpecInt95 benchmark
suite.

Keywords: Clustered microarchitectures, dynamic code
partitioning, steering logic, dynamically scheduled
processors.

1. Introduction

Scaling-up current superscalar microarchitectures will face
significant problems such as the growing impact of wire
delays [2] [13] and increasing complexity of some parts
such as the issue and rename logic [15]. Clustering is an
effective solution to these problems. A clustered
microarchitecture partitions some of this critical logic into
simpler parts and, at the same time, it reduces the impact of
wire delays by keeping most of the communications local

to single clusters and avoiding communications among
different clusters whenever possible.

Current superscalar processors are in fact partitioned
into two clusters, one for integer instructions and the other
for FP operations. Each of these clusters has its own
instruction queue1, issue logic, functional units and register
file. However, these two data-paths can be underutilized
due to a poor workload balance. This is especially true
when the processor is running integer applications, which
(almost) only use the integer data-path. Providing the two
data-paths with the capability of executing any type of
instructions would imply that every cluster should have any
type of functional unit. However, since FP applications are
rich in integer instructions, Palacharla and Smith [16]
addressed this drawback by proposing a more cost-
effective approach based on extending the FP data-path
with functional units for simple integer and logical
operations, which are usually the most frequent
instructions. This requires minor modifications to existing
microarchitectures and may result in significant speed-ups,
especially for integer applications, since both data-paths
can process instructions in parallel.

Deciding which instructions are executed in each
cluster is a critical issue of clustered microarchitectures.
We will refer to this problem as code partitioning. This
work focuses on code partitioning mechanisms for
clustered microarchitectures. Although the schemes
presented are evaluated in one architecture, we believe that
the same schemes can be used in more generic clustered
architectures. We first show that dynamic mechanisms can
be more effective than static ones. Then, we propose
several dynamic mechanisms and evaluate their
performance. We report average speed-ups of up to 36%
for the SpecInt95 benchmark suite, when compared with a
conventional microarchitecture with the naive integer-FP

1. In some processors the instruction queue may be shared.
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code partitioning. We also show that the proposed
approaches outperform previously proposed dynamic
schemes.

The rest of this paper is organized as follows. Section
2 describes the assumed processor microarchitecture.
Section 3 presents and evaluates several code partitioning
mechanisms. It also includes comparisons with previously
proposed mechanisms. Section 4 discusses some related
work. Finally, Section 5 summarizes the main conclusions
of this work.

2. Processor Microarchitecture

The target processor microarchitecture is based on the
proposal made by Palacharla and Smith [16] and also
investigated by Sastry, Palacharla and Smith [18], which
extends a conventional microarchitecture in order to allow
simple integer and logic instructions to be executed in both
clusters. Unlike those works, we propose a dynamic code
partitioning scheme, which is performed by a hardware that
is referred to as steering logic. Dynamic partitioning has
the advantage of not requiring any modification to the ISA,
unlike the static approaches. Furthermore, the complexity
of this hardware is low, as will be later shown. Basically, it
requires some modifications in the register renaming
mechanism and some tables that hold information used by
the partitioning heuristics.

Figure 1 shows a block diagram of the processor
architecture. The main differences with a conventional
architecture are the steering logic and the buses that allow
values to be copied from one cluster to the other.

Instructions are fetched and decoded by a centralized
hardware and then, they are dispatched to one of the two
clusters. Each cluster has its own data-path and instruction
issue logic. Both clusters have a set of simple integer and
logic functional units. In addition, one cluster contains
complex integer functional units (multiplier and divider)
and the other has floating-point functional units. Local
bypasses are responsible for forwarding result values
produced in a cluster to the inputs of the functional units in
the same cluster. A local bypass takes0cycles, so an output
in cyclei can be an input of a FU the following cycle (i+1).
Inter-cluster bypasses are responsible for forwarding
values between different clusters. Therefore, they are
slower than local ones, and we assume that they take one
cycle.

Dynamic register renaming is performed by means of
a physical register file in each cluster and a single register
map table. Since integer instructions can be executed in
both clusters, the entries of the map table for integer
registers contain two fields that identify the mapping in
each cluster. When an instruction is decoded, the steering
logic decides in which cluster it is to be executed and a
physical register from that cluster is allocated for the
destination operand (if any). When a source operand of an
instruction resides in the remote cluster, a physical register
in the local cluster is allocated and the dispatch logic inserts
a “copy” instruction that will move the data from the
remote to the local cluster. This instruction will read the
operand when it is available and will send the value
through one of the inter-cluster bypasses. Copy instructions
compete for issue slots and processor resources (e.g.
register file ports) as any other instruction. This scheme
implies some register replication but only for values that
are used in the two clusters. We will show that the proposed
partitioning schemes incur in a low degree of replication.

Load and store instructions are internally split into
two operations, one for computing the effective address
and another that performs the memory access. Address
calculation can be performed in any of the two clusters
since it involves a simple integer operation (addition).
Then, the instruction is forwarded to a unique
disambiguation logic that decides when the instruction can
perform its memory access. A load reads from memory
after being disambiguated with all previous stores, whereas
stores write to memory at commit.

3. Code Partitioning Schemes

This section presents several partitioning approaches and
evaluates their performance. We first define some
terminology and describe the experimental framework.
Then, we compare the effectiveness of static partitioning
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versus a simple dynamic mechanism. Next, alternative
dynamic schemes are presented and evaluated. Finally, a
comparison with a previously proposed dynamic scheme is
presented.

3.1. Terminology

The register dependence graph (RDG) represents all
register dependences in a program. It is a directed graph
that has a node associated to each static instruction and an
edge for every data dependence (true dependence) through
a register. Memory instructions are special cases since they
are split into two disconnected nodes, one representing the
address calculation and the other the memory access.
Figure 2 shows an example of an RDG. Note that for the
sake of clarity, in the assembly code memory instructions
have already been split into two, one for address

calculation (EA) and another for the memory access LD/
ST.

Thebackward sliceof an RDG with respect to a node
v is defined as the set of nodes from whichv can be
reached, includingv [18]. Figure 2 shows the backward
slice with respect to node 13 of the sample RDG.

TheLdSt sliceof a program is defined as the set of all
instructions that belong to a backward slice of any address
calculation instruction. Similarly, theBr sliceof a program
consists of all instructions that belong to the backward slice
of any branch instruction. Figure 2 shows the LdSt slice
and the Br slice of the sample program. Each backward
slice is shaded in a different gray level.

We will refer to the cluster of the processor that can
perform just integer operations as theinteger cluster, and
the cluster that can execute FP and simple integer
instructions will be called theFP cluster.

1 MOV  0, R i
2 for: EA   R B+Ri
3 LD   R Bi
4 EA   R C+Ri
5 LD   R Ci
6 BEQZ RCi , l1
7 DIV  R Bi , R Ci , R Ai
8 JMP  l2
9 l1: MOV  0, R Ai
10 l2: EA   R A+Ri
11 ST   R Ai
12 ADD  R i , 4, R i
13 BNEQ Ri , N*4, for

Assembly code(RA, RB and RC contain the
initial addresses of arrays A, B and C respectively)

Figure 2: Example of a RDG

for (i=0;i<N;i++) {
if (C[i]!=0) A[i]=B[i]/C[i];
else A[i]=0;

}
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3.2. Experimental Framework

Performance figures were obtained through a cycle-
based timing simulator based on the SimpleScalar tool set
v3.0 [3], which was extended to simulate the architecture
described in section 2. Results are presented for the
SpecInt95 benchmark suite. Table 1 lists the benchmark
programs and their inputs. Programs were compiled with
the Compaq/Alpha C compiler with the -O5 optimization
flag. For each benchmark, 100 million instructions were
run after skipping the first 100 million. Table 2 shows the
architectural parameters of the assumed processor.

Performance will usually be reported as speed-up
over a base architecture, which is a conventional
microprocessor with the same architectural parameters
listed in Table 2 except that it has neither integer units in
the FP cluster nor inter-cluster bypasses.

3.3. Static versus Dynamic Partitioning

A static partitioning approach requires some extensions to
the ISA in order to allow the compiler to specify to the
hardware the target cluster for each instruction. Moreover,
it is less flexible than a dynamic approach since all
dynamic instances of the same static instruction are
executed in the same cluster. On the other hand, its
hardware complexity is negligible.

The static partitioning proposed by Sastryet al. [18]
is based on sending to the integer cluster all instructions
that belong to the subgraph defined by the LdSt slice,
probably extended with neighbor instructions. This
extension is based on some heuristics that try to
approximate its effect in terms of workload balance and
communication overheads.

Figure 3 compares the speed-ups of that static
partitioning with the speed-ups achieved by a simple
dynamic partitioning that tries to dispatch all instructions in
the LdSt slice to the integer cluster and the remaining
instructions to the FP cluster (excepting complex integer
instructions). We will refer to this dynamic partitioning
scheme asLdSt slice steering. The numbers for the static
partitioning have been obtained from the original paper
[18] and the dynamic approach has been simulated using
the same compiler, the same compiler options, the same
benchmarks and the same architecture. Note that the
dynamic scheme significantly outperforms the static one
for all the programs excepting m88ksim, for which both

schemes achieve similar levels of performance. On
average, theLdSt slice steeringachieves an speed-up of
16% whereas the static partitioning speed-up is just 3%.

Parameter Configuration

Fetch width 8 instructions

I-cache 64KB, 2-way set-associative. 32-byte lines, 1-
cycle hit time, 6-cycle miss penalty

Branch Predictor

Combined predictor of 1K entries with a Gshare
with 64K 2-bit counters, 16 bit global history,

and a bimodal predictor of 2K entries with 2-bit
counters.

Decode/Rename width 8 instructions

Instruction queue size 64 64

Max. in-flight instructions 64

Retire width 8 instructions

Functional units

3 intALU + 1 int mul/
div

3 intALU + 3 fpALU
+ 1 fp mul/div

 3 comm/cycle to C2 3 comm/cycle to C

Communications consume issue width

Issue mechanism

4 instructions 4 instructions

Out-of-order issue
Loads may execute when prior store addresses

are known

Physical registers 96 96

D-cache L1

64KB, 2-way set-associative. 32-byte lines, 1-
cycle hit time, 6-cycle miss penalty

3 R/W ports

I/D-cache L2

256 KB, 4-way set associative, 64-byte lines, 6-
cycle hit time.

16 bytes bus bandwidth to main memory, 16
cycles first chunk, 2 cycles interchunk.

Table 2: Machine parameters (split into cluster 1 and
cluster 2 if not common)

Figure 3: Static versus dynamic partitioning
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Table 1: Benchmarks and their inputs



This dynamic partitioning can be implemented by
including a table that is indexed by the PC of instructions.
For each entry it has a one-bit flag that denotes whether the
corresponding instruction belongs to the LdSt slice or not.
Initially all the bits are cleared. For every instruction, if it
is a memory instruction its flag is set. If an instruction finds
its flag set, the flags of its parents in the RDG are also set.
The parents are identified by means of an additional table
that holds for each logical register the PC of the last
decoded instruction that uses it as a destination register.

3.4. LdSt Slice Steering versus Br Slice Steering

The performance of any partitioning scheme is quite
sensitive to the number of inter-cluster communications
that it generates. A communication has some latency that
may delay the execution of the consumer instructions.
Therefore, the criticality of consumer instructions is even
more important than the absolute number of
communications. An inter-cluster communication that is
consumed by an instruction that is not critical may have no
effect on the execution time. Some memory instructions,
especially those that cause many cache misses, are critical
in most programs, which suggests that the LdSt slice
steering may be an appropriate partitioning because
executing all the backward slice of a load in one cluster
avoids adding communication delays to the computation of
its address. However, branch instructions are also critical in
non-numeric codes such as the SpecInt95. This suggest an
alternative partitioning scheme that steers instructions in
the Br slice to the integer cluster and the remaining
instructions to the FP cluster (excepting complex integer
instructions). We will refer to this scheme as Br slice
steering. The hardware to implement this scheme is
basically the same as that described in section 3.3 for the
LdSt slice steering.

Figure 4 compares the performance of the LdSt slice
steering with that of the Br slice steering. Note that the
performance of the Br slice steering is somewhat lower,
which is explained by the larger number of
communications that it generates, as shown in Figure 5.
This figure shows the average number of communications
per dynamic instruction, split into critical and non-critical.
We consider that a communication is critical when there is
any instruction in the destination cluster that has been
delayed due to the communication.

Another critical factor for the performance of a
clustered architecture is the workload balance. The
workload of a cluster can be measured as the number of
ready instructions it has. Figure 6 shows the distribution
function of the workload balance (that is, the difference
between the number of ready instructions in each cluster

for each cycle). It can be seen that both dynamic
partitioning schemes result in a similar workload balance.
In both cases, there is a significant percentage of time in
which the two clusters have different workload: either the
integer or the FP cluster is overloaded. Note that the
overload of the FP cluster could be reduced if some of the
instructions that are not part of the LdSt slice (resp. Br
slice) were dispatched to the integer cluster. This motivates
the next partitioning scheme.

3.5. Non-Slice Balance Steering

As motivated in the previous section, a better workload
balance could be achieved if instructions that are not in the
slice are used to balance the workload. However, sending

Figure 4: LdSt slice versus Br slice steering
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Figure 5: Average number of communications per
dynamic instruction for slice steering

Figure 6: Distribution of the diference in the number of
ready instructions between each cluster
(SpecInt95 average)
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every non-slice instruction to the least loaded cluster would
result in too many communications. A more effective
approach would be to send non-slice instructions to the
least loaded cluster only when there is a strong workload
imbalance (see next paragraph). Otherwise, these
instructions are sent to the cluster where their operands
reside in order to reduce communications. We refer to this
approach as non-slice balance steering.

The workload imbalance may be estimated by
counting the difference in the number of instructions
steered to each cluster (we refer to this metric as I1).
However, this metric does not consider the amount of
parallelism present in each instruction window at a given
time.

On the other hand, the workload of a cluster may be
computed as the number of ready instructions it has. The
workload is considered imbalanced when one cluster has
more ready instruction than its issue width, and the other
has less than its issue width. Just in this scenario, the instant
workload imbalance is quantified as the difference in
number of ready instructions (metric I2). In any other
scenario, the processor can execute the instructions at the
maximum possible rate, so the workload is then considered
balanced.

The load balancing mechanism presented in this work
considers the two metrics (I1 and I2) by maintaining a
single integer imbalance counter that combines the two
informations. Each cycle, the counter is updated according
to the average of I2, computed along N cycles. It is also
updated with I1, by incrementing or decrementing it for
each instruction steered, so every instruction decoded in the
same cycle sees a different value of the workload balance
and thus, massive steerings to one cluster are avoided.

To determine whether there is a strong imbalance, the
absolute value of this counter is compared with a given
threshold. We have empirically determined that 16 and 8
are adequate values for N and the threshold respectively.
We have empirically observed that the metric I1 is more
effective than the I2 to balance the workload when both are
considered isolated. In fact, metric I1 alone gives
performance figures quite close to those produced by the
combination of I1 and I2.

Figure 7 compares the performance of the non-slice
balance steering with that of the slice steering. It can be
seen that the non-slice balance steering is beneficial for the
Br slice but detrimental for the LdSt slice, in spite of the
fact that this scheme improves the workload balance. This
is explained by the amount of communications that these
schemes generate, which are depicted in Figure 8. This
figure shows that the non-slice balance steering
significantly increases the number of communications for

the LdSt slice whereas it has about the same number of
communications as the slice steering for the Br slice.

Figure 9 shows the distribution function of the
workload balance for the non-slice balance steering. Note
that the workload balance has improved (see the shape of
the curve) in comparison with the slice steering scheme
(figure 6), but there is still a large percentage of cycles
where the imbalance is significant. It is especially
remarkable the overload of the integer cluster, which
motivates the next partitioning scheme.

Figure 7: Non-slice balance steering versus slice steering
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3.6. Slice Balance Steering

The Br slice (or LdSt slice) of a program consists of several
backward slices of branches (resp. loads/stores). A better
balance could be achieved if the instructions in a given
backward slice were sent to the same cluster but different
backwards slices could be sent to different clusters. We
refer to this scheme as slice balance steering.

In this scheme, instructions are classified into
backward slices (or slices for short) at run-time by means
of the tables shown in Figure 10. The slice table identifies
for each instruction the slice to which it belongs. The
backward slice of instructionv is identified by the PC ofv.
Initially no instruction belongs to any slice, which is
denoted by a special value in the slice table. When a branch
is executed (resp. a load/store), the slice table is modified
to indicate that this instruction belongs to its own slice.
Every time that an instruction in a slice is executed, it
propagates the slice ID to its parents, which are identified
by means of the parent table. For each logical register, this
table holds the PC of the last decoded instruction that uses
this register as its destination operand. The cluster where
each slice is currently mapped is identified by means of the
cluster table.

Instructions that belong to a slice are dispatched to
the cluster where the slice is assigned (according to the
cluster table). However, if this cluster is strongly
overloaded (using the same workload measures as in the
previous steering scheme), the whole slice is re-assigned to
the other cluster. Instructions that do not belong to any slice
are handled as in the non-slice balance steering approach.

Figure 11 shows the speed-up of the slice balance
steering scheme over the base architecture. It can be seen
that the performance for both types of slices (LdSt and Br)
are very similar, and overall, the effectiveness of this
approach is much higher than previous schemes. The
average speed-up is 27% for the LdSt slice and 26.5% for
the Br slice.

This good performance is due to a significant
improvement in workload balance and a reduction in
number of communications alike. Figure 12 shows the
distribution of the workload balance for the slice balance
steering (LdSt and Br) and compares it with that of a naive

steering scheme that alternatively sends instructions to
each cluster, if they can be executed in both. Note that this
scheme has a low performance (as we will later show) due
to its high number of communications, but it distributes the
workload quite evenly. We refer to this scheme asmodulo
steering. We can see that the workload balance of the slice
balance steering is almost the same as that of the modulo
steering. Regarding communications, the slice balance
steering generates 0.07 (LdSt) and 0.08 (Br)
communications per dynamic instruction on average,
which is quite less than previous schemes.

3.7. Priority Slice Balance Steering

The objective of dispatching a whole slice of a load/store or
branch instruction to the same cluster is to avoid
communications in critical parts of the code. However, not
all slices are equally critical. In particular, one may expect
that slices corresponding to loads that miss very often in
cache, or branches that are wrongly-predicted very often
are more critical than the others since they cause significant
penalties. Thus, slices could be classified according to their
criticality. Computing the criticality of each instruction is
by itself a complex problem that is beyond the scope of this
work. Instead, we approximate the criticality of a slice by
the number of cache misses or branch mispredictions of the

Figure 10: Hardware support for the slice
balance steering

slice IDPC clusterslice ID PCLog. reg.

Slice Table Cluster Table Parent Table

Figure 11:  Slice balance steering performance
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instruction that defines the slice, depending on the type of
slice.

The priority slice balance steeringtries to dispatch
the instructions of any slice corresponding to a critical
instruction to the same cluster, whereas the remaining
instructions are dispatched following the same approach as
the non-slice balance steeringscheme. The threshold for
deciding whether an instruction is critical or not will be
dynamically adjusted so that around 50% of the
instructions belong to critical slices. In particular, every
8192 (213) cycles the processor computes the number of
instructions that have been considered as belonging to a
critical slice. If this number is higher than half of the
number of executed instructions, the threshold is increased;
otherwise, it is decreased.

The main advantage of this scheme is that now, only
the critical slices will be treated as slices. This scheme
improves the flexibility for balancing the workload since
there are more instructions that are individually treated
than in the previous schemes. Having more flexibility to
balance the workload with individual instructions reduces
the number of slice re-mappings caused by strong
imbalances (see Section 3.5 for a definition). Such re-
mappings can arise in the middle of the execution of a
given slice, and therefore, they may cause undesired intra-
slice communications. Thus, we expect this scheme to
reduce the number of critical communications, although it
might increase the total number of communications when
trying to improve the workload balance. Overall, this
scheme tries to minimize the communications in the critical
slices while it tries to maximize the workload balance by
means of the rest.

As far as the hardware implementation is concerned,
we need a cycle counter (13 bit counter), a threshold
register with an increment and decrement hardware, a
critical instruction counter –16 bits are enough (213cycles
x 23 issue-width)– and a non-critical instruction counter. In
addition, the cluster table (see figure 10) should be
augmented with a new field that counts for each slice the
number of cache misses or branch mispredictions of the
instruction that defines the slice, and a flag that indicates
whether the slice is critical.

Figure 13 shows the performance of the priority slice
balance steering. It achieves an average speedup of 27.7%
(LdSt slice) and 28.8% (Br slice) over the base
architecture, which is slightly better than that of the slice
balance steering (see figure 11). This improvement is due
to the reduction in number of critical communications per
dynamic instruction, which on average decreases from
0.050 to 0.045 for the LdSt slice and from 0.055 to 0.043
for the Br slice.

3.8. General Balance Steering

The last presented scheme is a particular case of the
previous one, in which the criticality threshold is set so
high that there are no critical instructions and all
instructions are steered as if they were non-slice
instructions. That is, instructions are sent to the least loaded
cluster when there is a strong workload imbalance or they
have an equal number of operands in both clusters.
Otherwise, they are sent to the cluster where most of their
operands reside. The immediate consequence is that the
required hardware to identify programs slices (see figure
10) is not needed and no extra hardware is required to
detect the criticality of instructions.

Figure 14 shows the performance of this scheme. It
also includes the performance of the modulo steering and
that of a 16-way issue processor (8 integer and 8 FP). The
performance of this latter architecture can be considered as
an upper-bound for any instruction partitioning approach
since it has the same integer instruction throughput as the
assumed architecture but it does not incur in any
communication penalty. The general balance steering
achieves an average speed-up of 36%, which is higher than
previous schemes and just 8% smaller than the upper-
bound. On the other hand, the modulo steering produces a
rather low improvement (2.8% on average).

As outlined in section 2, the cluster microarchitecture
requires some degree of register replication. We have
evaluated the average number of logical register that have

Figure 13:  Priority slice balance steering performance
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Figure 14:  General balance steering
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a physical register allocated in both clusters. Results show
(see figure 15) that the required register replication is very
low. Instead of replicating the whole physical register file
as the Alpha 21264 processor does [10], on average this
architecture requires only 3.1 registers to be replicated.
This saving in register storage may have a significant
impact on the register file access time, which in turn is one
of the critical delays of superscalar processors [7].

This scheme performs at the same level when there is
just one bus each way to connect the clusters. Similar
schemes to the General Balance one can be found in a work
of the same authors [4].

3.9. Comparison with Other Dynamic
Partitioning Approaches

Palacharla, Jouppi and Smith [15] recently proposed a
dynamic partitioning approach for a different clustered
architecture that could be also applied to our assumed
architecture. The basic idea is to model each instruction
queue as if it was a collection of FIFO queues with
instructions capable of issuing from any slot within each
individual FIFO. Instructions are steered to FIFOs
following some heuristics that ensures that a FIFO only
contains dependent instructions, each instruction being
dependent on the previous instruction in the same FIFO
(for more details refer to the original paper [15]). In this
case, the FIFO approach has been implemented (8 FIFOs in
each cluster and each 8-deep); and thus, it has been
simulated with the same architecture and benchmarks used
for the schemes presented in this work.

Figure 16 shows that the performance of the general
balance steering described in the previous section
significantly outperforms the steering scheme based on
FIFOs for all the programs. On average, the FIFO-based
steering increases the IPC of the conventional
microarchitecture by 13% whereas the general balance
steering achieves a 36% improvement.

This difference in performance is explained by the
fact that both schemes result in quite similar workload
balance but the FIFO-based approach generates a
significantly higher number of communications. On
average, the general balance steering produces 0.042 inter-
cluster communications per dynamic instruction whereas
the FIFO-based approach results in 0.162 communications.

4. Related Work

The proposal of Sastry, Palacharla and Smith [18] and that
of Palacharla, Jouppi and Smith [15] are two partitioning
schemes that can be applied to the same type of architecture
assumed in this work. The former is a static approach
whereas the latter is based on run-time mechanisms. We
have briefly outlined these techniques in sections 3.3 and
3.9 respectively and we have shown that the mechanisms
proposed in this work, in particular the general balance
steering, significantly outperform both of them.

Another clustered architecture with a mostly-static
code partitioning with some run-time support to improve
workload balance is the Multicluster architecture [6]. In
this case, the processor consists of several identical clusters
whereas our proposal focuses on an architecture that
requires minor modifications to a conventional processor
microarchitecture.

Kemp and Franklin proposed a clustered architecture
[11] where instructions are assigned to clusters based on
inter-instruction register dependencies. However, since
they assume a centralized register file, the steering scheme
only needs to group two dependent instructions in the same
cluster when the value from the producer is not still
available at the time the consumer is decoded. This simple
steering scheme is not suitable for our "distributed" register
file, and in addition, it does not address the load balancing
problem.

Clustering can also be applied to VLIW architectures
[8] [14]. In this case the partitioning is done at compile
time.

Figure 15: Register replication for the general
balance steering
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Figure 16: General balance steering versus FIFO-based
steering [15]
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Other authors have proposed clustered
microarchitectures in which the partitioning scheme
focuses on reducing the control dependence penalties.
Examples of such architectures are the Multiscalar [9] [19],
SPSM [5], Superthreaded [20], Trace Processors [17] [21],
Speculative Multithreaded [12] and Dynamic
Multithreaded [1]. In such architectures, each cluster
executes a different thread of control, all except one being
speculative. Partitioning to reduce branch penalties and
data dependence penalties are orthogonal paradigms that
attack different problems and the two would combine
nicely.

5. Conclusions

We have proposed a number of run-time mechanisms that
dynamically partition a sequential program into the
different clusters of a clustered microarchitecture. We have
focused on a two-cluster processor that is based on a
conventional superscalar microarchitecture with the
capability of executing simple integer operations in both
the integer and the FP datapaths. Nevertheless, the schemes
can be used in a generic clustered architecture with
symmetric clusters.

The different proposed schemes have different levels
of performance that are explained by their effectiveness to
both reduce/hide inter-cluster communications and balance
the workload. We have shown that all the schemes provide
a significant speed-up over a conventional
microarchitecture. For instance, the general balance
steering scheme achieves an average speed-up of 36% for
the SpecInt95 and its IPC is just 8% below that of a
conventional processor with twice its issue width. We have
also shown that the proposed schemes significantly
outperform previous dynamic and static proposals.
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