
Selective Predicate Prediction for Out-of-Order Processors

Eduardo Quiñones
Computer Architecture

Department
Universitat Politècnica de

Catalunya

equinone@ac.upc.edu

Joan-Manuel Parcerisa
Computer Architecture

Department
Universitat Politècnica de

Catalunya

jmanel@ac.upc.edu

Antonio Gonzalez
Intel Barcelona Research

Center
Intel Labs Barcelona

antonio.gonzalez@intel.com

ABSTRACT
If-conversion transforms control dependencies to data de-
pendencies by using a predication mechanism. It is useful to
eliminate hard-to-predict branches and to reduce the severe
performance impact of branch mispredictions. However, the
use of predicated execution in out-of-order processors has
to deal with two problems: there can be multiple defini-
tions for a single destination register at rename time, and
instructions with a false predicated consume unnecessary
resources. Predicting predicates is an effective approach to
address both problems. However, predicting predicates that
come from hard-to-predict branches is not beneficial in gen-
eral, because this approach reverses the if-conversion trans-
formation, loosing its potential benefits. In this paper we
propose a new scheme that dynamically selects which pred-
icates are worthy to be predicted, and which one are more
effective in its if-converted form. We show that our approach
significantly outperforms previous proposed schemes. More-
over it performs within 5% of an ideal scheme with perfect
predicate prediction.

Keywords
if-conversion, predicate prediction, confidence prediction

1. INTRODUCTION
Branches are recognized as a major impediment to exploit

instruction-level parallelism (ILP). The use of branch pre-
diction in conjunction with speculative execution is typically
used to remove control dependencies and expose ILP. How-
ever branch mispredictions can result in severe performance
penalties that tend to grow with larger window sizes and
deeper pipelines.

If-conversion [2] is a technique that helps to eliminate
hard-to-predict branches, converting a control dependence
into a data dependence and potentially improving perfor-
mance. Hence, if-conversion allows the compiler to collapse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS June 28-30, Cairns, Queensland, Australia.
Copyright 2006 ACM 1-59593-282-8/06/0006 ...$5.00.

Figure 1: If-conversion collapses multiple control
flows. The correct map definition of r34 depends
on the value of p6 and p7 predicates. (a) Original
if-sentence. (b) If-converted code

multiple control flow paths and schedule them based only
on data dependencies. If-conversion takes full advantage of
predicate execution. Predication is an architectural feature
that allows an instruction to be guarded with a boolean
operand whose value decides if the instruction is executed
or converted into a no-operation.

Some studies have shown that predicated execution pro-
vides an opportunity to significantly improve hard-to-predict
branch handling in out-of-order processors [4] [12]. This ad-
vantage tends to be even more important with larger window
sizes and deeper pipelines. However, the use of predicate in-
structions has two performance issues on such processors:

1. When multiple control paths are collapsed, multiple
register definitions are merged into a single control
flow, and they are guarded with a predicate. At run-
time, each definition is renamed to a different physical
register, thus existing multiple possible names for the
same logical register until the predicates are resolved.
Since predicates are resolved at the execute stage of
the pipeline, it may occur that the name of that reg-
ister is still ambiguous when renaming the source of
an instruction that uses it. Figure 1 illustrates the
problem.

2. Instructions whose predicate evaluates to false have
to be cancelled. If this is done in late stages of the
pipeline, these instructions consume processor resources
such as physical registers, issue entries and/or func-
tional units, and can potentially degrade performance.

To avoid the problem of multiple register definitions and
the unnecessary resource consumption, it would be desirable
to know the predicate value of an instruction at renaming.
A naive approach could stall the renaming until the predi-
cate is resolved, but it would causes a serious performance
degradation.

The transformation of a predicate instruction into a cmov-
like alpha instruction and the generation of a special micro-
operation are two proposed solutions to the multiple register
definition problem [15]. However they present two impor-
tant problems: 1) false predicated instructions still consume
processor resources; 2) these techniques introduce new data
dependencies that make the dependence graph deeper.

Predicting the predicates is another effective approach
that addresses both problems [5]. Instructions with a pred-
icate predicted to false are speculatively cancelled at the
rename stage and removed from the pipeline, thus avoiding
multiple definitions and avoiding also the resource pressure
caused by cancelled instructions.

In some way, the prediction of predicates undoes if-conversion
transformations done by the compiler. Therefore, since if-
conversion appears to be more effective than branch pre-
diction for hard-to-predict branches [4], applying predic-
tion to all predicates misses the opportunities brought by
if-conversion.

Hence in this paper we propose a new scheme that selec-
tively predicts predicates based on a confidence predictor: a
predicate is predicted only if the prediction has enough con-
fidence. If not, the if-converted form remains but the pred-
icated instruction is converted to a cmov-like instruction to
avoid the multiple definition problem. Our approach tries
to preserve if-conversion for hard-to-predict branches. We
have found that up to 84% of if-conversion transformations
are maintained. Our proposal outperforms a previous non-
seletive prediction scheme by more than 11%. Compared to
previous techniques without prediction, the speedups of our
approach is 13%. Our technique performs within 5% of a
scheme with perfect predicate prediction.

The paper is organized as follows. Section 2 discusses the
state of the art on predication in an out-of-order execution
model. Section 3 describes our proposed technique and dis-
cusses several design issues about the confidence mechanism.
Section 4 presents the experimental results obtained. Sec-
tion 5 discusses complexity issues. Finally, the conclusions
are presented in section 6.

2. PREDICATION ON OUT-OF-ORDER PRO-
CESSORS

Predication was proposed by Allen et al. [2]. Since then,
many authors have focused their studies on the generation
of efficient predicated code. In this section we will shortly
review only those studies that focus on predication for out-
of-order processors.

2.1 Software Approaches
Chang. et.al. [4] studied the performance benefit of us-

ing speculative execution and predication to handle branch
execution penalties in an out-of-order processor. They se-
lectively applied if-conversion to hard-to-predict branches
by using profile information to identify them; the rest of
branches were handled using speculative execution. They
found a significant reduction of branch misprediction penal-
ties. Mahlke et al. [12], studied the benefits of partial and
full predication code in an out-of-order execution model to

achieve speedups in large control-intensive programs. The
paper shows that, in comparison to a processor without
predication support, partial predication improves performance
by 33%, whereas full predication improves performance by
63%. August et.al. [3] showed that an effective compile strat-
egy for predicated execution has to address which instruc-
tions are predicated and where are they scheduled. They
argue that a detailed analysis of the dynamic program be-
havior and the availability of resources are required, since
multiple control paths have to share processor resources.

Predication has already been implemented in real out-
of-order processors. Many processors such as Alpha [6] or
PowerPC [9] implement partial predication. This approach
represents an attractive solution for designers since the re-
quired changes to existing instruction set architectures (ISA)
and data paths are minimized. However, the use of full pred-
icate execution provides more flexibility and a larger poten-
tial performance improvement [12].

Kim et.al. [11] have recently proposed a mechanism in
which the compiler generates code including special wish
branch instructions that can be executed either as pred-
icated or non-predicated code based on a run-time confi-
dence estimator. Unlike our proposal, this is a combined
software/hardware technique that requires the compiler sup-
port.

As far as we know, just a few studies have proposed pure
hardware techniques to use full predicate execution in out-
of-order processors. These studies are explained in the fol-
lowing sections.

2.2 False Predicated Conditional Moves
A common way to solve the multiple register definitions

problem is to change the semantic of predicated instructions.
This new functionality can be expressed in a C-style oper-
ation: register definition = (predicate)? normal execution
: previous register definition. If the predicate is evaluated
to true, the destination register is updated with the normal
instruction computation. However, if it is evaluated to false,
the destination register is updated with the value of the pre-
vious register definition. In fact, the instruction copies the
value from its previous physical register to the newly allo-
cated physical register.

Although simple, this approach serializes the execution
of predicated instructions due to the dependence on the
previous definition, making deeper the dependence graph
and reducing the effectiveness of the dynamic execution.
Moreover, instructions with a false predicated are not early-
cancelled from pipeline, so they continue consuming physical
registers, issue queue entries and functional units. The new
dependencies are shown on the right side of the Figure 2b.

2.3 Generation of Select-µops
Kling et al. [15] proposed to solve the ambiguity of mul-

tiple register definitions by automatically inserting into the
instruction flow a micro-operation, called select-µop, that
copies the correct register definition to a newly allocated
physical register. The idea of the select-µop is derived from
the φ-function used by compilers in static-single-assignment
code (SSA) [7].

Figure 2: Data dependence graph changes when
predicate instructions are converted to false predi-

cated conditional moves. (a) Original code. (b) Con-
verted Code.

Figure 3: Generation of select-µops at the rename
stage. (a) Original code. (b) The code has been
renamed and the r34 RAT entry modified. When
instruction i5 consumes r34, a select-µop is gener-
ated.

They propose an augmented Register Alias Table (RAT).
Each entry is expanded to record the physical register iden-
tifiers of all the definitions as well as the guarding predicate
of the instruction that defines each one. When an instruc-
tion renames a source operand, its physical register name is
looked up in the RAT. If multiple definitions are found in
the RAT entry, a select-µop is generated and injected into
the instruction stream. The multiple register definitions and
their guarding predicates are copied as source operands of
the select-µop, and a new physical register is allocated for
the result, so it becomes the unique mapping for that reg-
ister. Later on, when the select-µop is executed, the value
of one of its operands is copied to the destination register
according to the outcomes of the various predicates. The
goal of the select-µop is to postpone the resolution of the
renaming ambiguity to latter stages of the pipeline.

Figure 3 shows how the select-µop works. Figure 3a shows
the original code before renaming. Figure 3b, shows the
same code after renaming, as well as the modifications of the
r34 RAT entry. Predicated instructions i3 and i4 fill the ex-
tra RAT fields, and are executed as non-predicated. Then,
prior to renaming the dependent instruction i5, a select-µop
is generated which leaves a unique definition for r34. Predi-
cated instructions are not serialized between each other, but

the select-µop acts like a barrier between predicate instruc-
tions and its consumers, as shown in the dependence graph.

The complexity of the RAT is substantially increased to
hold multiple register definitions and their predicate guards.
In addition, this technique increases the register pressure
for two reasons. First, because each select-µop allocates an
additional physical register. Second, because when a predi-
cate instruction commits, it can not free the physical register
previously mapped to its destination register as conventional
processors do. In fact, this physical register can not be freed
until the select-µop that uses it commits. Moreover, instruc-
tions guarded with a false predicated are not early-cancelled
from the pipeline so they continue consuming physical reg-
isters, issue queue entries and functional units.

2.4 Predicate Prediction with Selective Replay
Mechanism

Predicting predicates is a good solution to overcome pred-
ication problems derived from out-of-order execution, be-
cause all predicates are known at rename stage. However,
predicate mispredictions can produce a high performance
degradation.

Chuang et al. [5] proposed a selective replay mechanism
to recover the machine state from predicate mispredictions
without flushing the pipeline. Misspeculated instructions
are re-executed with the correct predicate value, while other
non-dependent instructions are not affected. With this mech-
anism all instructions, predicted true or false, are inserted
into the issue queue. The issue queue entries are extended
with extra tags to track two different graphs: the predicted
and the replay data dependence graphs.

The predicted data flow tracks the dependencies as deter-
mined by the predicted values of predicates, as in conven-
tional schedulers. When a misprediction occurs, the mis-
speculated instructions are re-executed according to the de-
pendencies on the replay data flow graph. In this mode,
predicated instructions are converted to false predicated con-
ditional moves (see section 2.2), which forces all the multiple
definitions of the same register to be serialized.

To maintain the replay data graph, one extra input tag
is needed for each source operand. This tag contains the
latest register definition, regardless of the predicate value
of this definition. Recall that false predicated conditional
moves also need an extra input tag containing the previous
definition of the destination register. Figure 4 illustrates the
execution of the predicted and the replay data dependence
graphs.

The proposal of Chuang et al. is based on the IA64 ISA.
IA64 is a full predicate ISA, with a wide set of compare in-
structions that produce predicate values. These instructions
are classified in 11 types. However, Chuang’s proposal only
predicts one type (the so called unconditional [10]). The un-
conditional comparison type differs from others because it
always updates the architectural state, even if its predicate
is evaluated to false. The proposed selective replay works
fine with these kind of comparison, but can not handle com-
parisons that do not update the state when the predicate
evaluates to false, because an extra mechanism would be

Figure 4: Selective replay. (a) Original code. (b)
Data dependencies after predicate prediction if no
misprediction occurs (assuming p6=true, p7=false,

p8=false, i3 and i4 are inserted into the IQ but
do not issue). (c) Data dependencies after pred-
icate misprediction (assuming p6=false, p7=true,

p8=false, i2 and i4 are converted to false predicated

conditional moves so the correct r32 value is propa-
gated through the replay data dependence graph).

needed to obtain the previous predicate definition. Our ex-
periments show that on average 60% of compare instructions
are unconditional.

Another drawback of the selective replay is the increased
resource pressure caused by instructions whose predicate is
predicted false, because they remain in the pipeline. In ad-
dition, every instruction must remain in the issue queue un-
til it is sure that no re-execution will occur, thus increasing
the occupancy of the issue queue. Moreover, the extra input
tags required for the replay mechanism significantly increase
the complexity of the issue queue.

3. SELECTIVE PREDICATE PREDICTION
The use of predicate execution in out-of-order processors

has to deal with two problems: the multiple definitions of a
source register at rename time, and the unnecessary resource
consumption caused by instructions with a false predicated.
However, previous proposals have only focused on the first
problem. Moreover, for proposals such as generation of
select-µops [15] or false predicated conditional moves tech-
nique, instructions with false predicateds not only consume
registers, issue queue entries, etc. but they also compete for
execution resources. Still worse, the select-µops technique
further aggravates the resource pressure with these extra
pseudo-instructions injected in the pipeline.

The prediction of predicates appears to be a good solu-
tion to avoid consuming unnecessary resources, because once
the predicate of an instruction is predicted false, it can be
cancelled and eliminated from the pipeline before renaming.
Unfortunately, the selective replay mechanism [5] precludes
this advantage because it needs to maintain all predicated
instructions in the issue queue, regardless of the predicate
being predicted true or false.

The prediction of predicates technique generates a pre-
diction for every compare instruction that produces a pred-
icate, and speculatively executes the instructions that are
guarded with it. In fact, this technique produces an effect
similar to branch prediction and speculation or, in other
words, it reverses the if-conversion transformations. For pre-
dictable predicates, the code that results after prediction is
more effective because it avoids unnecessary resource con-
sumption. However, the if-converted form is more effective
for hard-to-predict branches, because of the high mispredic-
tion penalties. Since selective replay predicts all predicates
regardless of whether they are predictable or not, it loses
the opportunities brought by if-conversion. On the positive
side, selective replay avoids flushing the pipeline on predi-
cate mispredictions, so it reduces its high associated penal-
ties. However, note that this advantage is only important
for hard-to-predict branches.

Here, we propose a selective predicate prediction scheme
that addresses the multiple definitions problem. Unlike se-
lective replay, the selective predicate prediction tries not to
lose the potential benefits of if-conversion. It dynamically
identifies easy-to-predict predicates with a confidence pre-
dictor: a predicated instruction is speculated only when its
predicate is considered easy-to-predict; otherwise it is pre-
served in its if-converted form. In the latter case, the mul-
tiple definitions problem is avoided by converting the pred-
icated instruction into a false predicated conditional move
(see section 2.2).

With selective predicate prediction, instructions whose
predicate is predicted false are cancelled and eliminated from
the pipeline before renaming, so they do not consume re-
sources unnecessarily. In case of a predicate misprediction,
the misspeculated instruction and all subsequent instruc-
tions are flushed from the pipeline and re-fetched. Of course,
handling mispredictions with flushes produce higher penal-
ties than with selective replay. However, as far as the confi-
dence predictor is able to correctly identify hard-to-predict
predicates and avoid predicting them, these penalties are ex-
pected to have a minor impact. The next sections describe
the selective predicate prediction mechanism in detail.

3.1 The Basic Predicate Prediction Scheme
This section describes the basic predicate predictor scheme

(without the confidence predictor) for an out-of-order pro-
cessor. This scheme assumes an ISA with full predicate sup-
port, such as IA64.

A predicate prediction is produced for every instruction
that has a predicate outcome, such as compare instructions,
and it is generated for every producer in early stages of
the pipeline from its PC. Figure 5 illustrates the predic-
tion mechanism for producers. Since compare instructions
have two predicate outputs, we have two predictors, one
for each compare outcome. When the compare instruction
is renamed, the two predictions are speculatively written
to the Predicate Physical Register File (PPRF). Later on,
when the compare instruction executes, the PPRF is up-
dated with the two computed values. In the example, p6
and p7 are renamed to pph1 and pph2 respectively.

Figure 5: Generation of a predicate prediction

Figure 6: Predicate consumption at the rename
stage

To support speculative execution of predicated instruc-
tions, each entry of the conventional PPRF is extended with
three extra fields: speculative and confidence bits, and ROB
pointer. Since the PPRF holds both predicted and com-
puted predicate values, the speculative bit is used to distin-
guish both types: when the PPRF is first written with a
prediction, the speculative bit is set to true; when it is up-
dated with the computed value, the speculative bit is set to
false.

A predicate prediction is consumed by one or more in-
structions that use it, such as predicated instructions.

When a predicated instruction reaches the rename stage,
it always reads its predicate value from the PPRF. If the
speculative bit is set to true the instruction will use the
predicate speculatively, so the processor must be able to
recover the previous machine state in case of misspecula-
tion. The ROB pointer field points to the ROB entry of the
first speculative instruction that uses the predicted predi-
cate. Thereby, if the prediction fails, the pointed instruction
and all younger instructions are flushed from the pipeline.
After the speculative bit is set to true, the ROB pointer
field must be initialized by the first consumer that finds it
empty. If the consumer predicate is set to true, the Cancel
Unit (CU), cancels the instruction and eliminates it from the
pipeline. Figure 6 shows the predicate consumption scheme.

Notice that if the two outcomes of compare instructions
were closely correlated, probably a single predictor would
suffice. However, we found that two separate predictors are
needed because these outcomes not only depend on the com-
pare instruction type and its condition result, but they also

depend on information that is not available in the front-
end [10].

3.2 The Confidence Predictor Mechanism
This section introduces a confidence predictor [8] to the

basic predicate prediction mechanism. The confidence pre-
dictions are used to select which if-conversion transforma-
tions are worthy to be undone, and which are not; i.e., to
select which predicates are predicted.

The confidence predictor is integrated with the predicate
predictor: each entry contains a saturated counter that in-
crements with every correct prediction and is zeroed with
every misprediction. A prediction is considered confident if
the counter value is saturated, i.e. it equals the confidence
threshold.

When a predicate prediction is generated for a compare
instruction, its confidence counter is compared with the con-
fidence threshold, producing a single confidence bit. When
the compare instruction is renamed, this bit is written to the
confidence field of the PPRF. Figure 5 shows the data paths
for prediction and confidence information. Once the pred-
icate is computed at the execution stage, the PPRF entry
and the predicate predictor are updated with the computed
value; the confidence counter is updated according to the
prediction success and the speculative bit is set to false.

If a predicated instruction finds the speculative and con-
fidence bits of its predicate set to true, it is speculated with
the predicted value. However, if the confidence bit is set
to false, the predicated instruction is converted into a false
predicated conditional move (see section 2.2). The new se-
mantic of the instruction can be represented in a C-style
form: result = (predicate)? normal execution : previous
register definition.

3.3 Confidence Threshold
The confidence threshold plays an important role in our

proposal. On the one hand, high threshold values could
result in lost opportunities of correct predictions. On the
other hand, low threshold values could result in severe per-
formance penalties because of predicate mispredictions. In
this section we present a study of different confidence thresh-
old schemes. All the experiments presented in this section
use the setup explained in section 4.1.

Figure 7 depicts the performance impact of different static
confidence thresholds (values 2, 4, 8, 16 and 32). As shown
in the chart, the choice of a static confidence threshold
does not affect equally to the various benchmarks. While
twolf has an impressive performance gain with high thresh-
old values, bzip2 degrades drastically as the threshold in-
creases. This observation suggests that adjusting dynami-
cally the threshold could result in a performance improve-
ment. Hence, an adaptive confidence threshold technique is
presented in the next section.

3.4 Adaptive Confidence Threshold
Adjusting the confidence threshold changes the frequency

of two important events with an important impact on per-
formance: reducing the threshold augments the number of
flushes caused by predicate mispredictions; increasing the

Figure 7: Performance impact of several confidence
threshold values. A scheme without confidence has
been chosen as baseline.

Figure 8: Variance of confidence threshold. (a).
Number of flushed instructions per predicated com-
mitted instruction. (b) Percentage of predicated
committed instructions that have been transformed
to false predicated conditional moves.

threshold causes more predicated instructions to be con-
verted into false predicated conditional moves because of a
non-confident prediction.

Figure 8 shows the relationship between the two effects:
graph (a) depicts the amount of instructions flushed due to
predicate mispredictions per committed predicated instruc-
tion; graph (b) depicts the amount of committed predicated
instructions that have been converted to false predicated con-
ditional moves. It is shown how threshold increases reduce
the number of flushes but increase the number of converted
instructions.

Comparing these results with those in Figure 7 shows that

different benchmarks may have different performance sen-
sitivity to threshold adjustments. For instance, while the
amount of flushes is reduced by almost 100% for twolf (the
number of flushed instructions decreases from 5,49 to 0,03
per commited predicated instruction), it is only reduced by
20% for bzip2, hence the different performance impact in
each case. Notice also that for bzip2 or art the number of
flushes becomes stable at low thresholds, so the increase of
converted instructions beyond this point has an important
impact on performance. On the other hand, for twolf or vpr
the number of flushes stabilize at high confidence thresh-
olds, so the impact of converted instructions is lower. For
benchmarks such as sixtrack the number of flushes stabilize
at high thresholds, but the number converted instructions
also increases considerably.

Both pipeline flushes and converted instructions have a
negative performance impact, but not in the same way. In-
structions converted to false predicated conditional moves
increase resource consumption and may stretch the depen-
dence graph. When the pipeline is flushed, the misspecu-
lated instruction and all subsequent instructions must be
re-fetched. An adaptive threshold mechanism must trade-
off the two effects, but giving more weight to flush reduction
because it causes a higher performance degradation.

Our adaptive threshold scheme counts the number of flushes
and converted instructions during a fixed period (measured
as a fixed number of instructions that produce a predicate).
After that period, the two counts are compared with those
obtained in the previous period, and the confidence thresh-
old is modified according to the following rules:

1. If the number of flushes decreases, then the number
of converted instructions is checked. If it has not in-
creased by more than 1%, then the threshold keeps in-
creasing. Otherwise, the threshold begins to decrease;
at this point, the number of flushes is considered a
local minimum and is stored.

2. If the number of flushes increases, then it is compared
to the last local minimum value. If the difference is less
than 1%, then the threshold keeps decreasing. Other-
wise, it begins to increase.

Figure 7 compares the performance of the adaptive thresh-
old scheme (the bar labeled Adapt Confidence) and the static
scheme with different thresholds. It shows that the adap-
tive scheme avoids the performance degradation of bzip2
and apsi, while maintaining the performance improvement
of twolf and vpr. The number that appears on top of the
adaptive confidence bar represents the average confidence
threshold value. Note that, in almost all cases, the adaptive
scheme adjusts the confidence threshold around the value of
the best static scheme. In case of art, the adaptive thresh-
old scheme can even outperform the best static scheme by
3%, because it may dynamically adjust the threshold to an
optimum value that varies along the execution. On av-
erage, the adaptive confidence threshold outperforms the
static schemes by more than 2%.

4. PERFORMANCE EVALUATIONS
This section evaluates the performance of our selective

predicate prediction scheme with adaptive confidence thresh-

old. It is compared to the previous hardware approaches for
predicated execution on out-of-order processors, described
in section 2. The false predicated conditional move tech-
nique described in section 2.2 is taken as the baseline for all
results. We have also evaluated a perfect predicate predic-
tion scheme, for comparison purposes.

4.1 Experimental Setup
All the experiments presented in this paper use a cycle-

accurate, execution-driven simulator that runs IA64 ISA bi-
naries. This simulator has been built from scratch using
the Liberty Simulation Environment (LSE) [14]. LSE is a
simulator construction system based on module definitions
and module communications. It also provides a complete
IA64 functional emulator that maintains the correct ma-
chine state.

We have simulated fourteen benchmark programs from
Spec2k [1] (eight integer and six floating-point) using the
test input set. All benchmarks have been compiled with
IA64 Intel’s compiler (Electron v.8.1) using maximum opti-
mization levels. For all benchmarks, 100 million committed
instructions are simulated. To obtain representative por-
tions of code to simulate, we have used Pinpoint tool [13].

The simulator models in detail an eight-stage out-of-order
processor. It pays special attention to the implementation of
the rename stage and models many IA64 peculiarities that
are involved in the renaming, such as the register stack en-
gine, the register rotation and the application registers. All
instructions that produce predicates are take into account.
Load-store queues, as well as the data and control specu-
lation mechanisms defined in IA64, are also modeled and
integrated in the memory disambiguation subsystem. The
main architectural parameters are shown in Table 1.

To implement the predicate predictor we have evaluated
the most common branch predictor designs and configura-
tions. Our experiments show that, for a 2x16KB capac-
ity, a Gshare predictor with 6 bits of global history is the
best configuration. Surprisingly, a simple Last Value pre-
dictor achieved comparable performance, even better than
more complex predictors such as two-level predictors. The
adaptive confidence threshold mechanism monitors periods
of 4096 predicate producer instructions. The confidence
threshold is stored in a six bit counter that increments and
decrements by one.

The simulator models also the generation of select-µops
technique [15] in detail. Each RAT entry is augmented to
record up to six register definitions with their respective
guards, and there is an additional issue queue for select-
µops.

The predicate prediction with selective replay technique [5]
is not modeled in detail. Instead, the simulator models a
simpler scheme whose performance is an upper-bound for
this technique. Instructions guarded with correctly pre-
dicted predicates execute as soon its source operands are
available. On the contrary, an instruction guarded with an
incorrectly predicted predicate is converted to a false predi-
cated conditional move, and it issues exactly as it would do
when re-executed in replay mode. In other words, instead

Simulator Parameters

Fetch Width Up to 2 bundles (6 instructions)

Issue Queues Integer Issue Queue: 80 entries

Floating-point Issue Queue: 80 entries

Branch Issue Queue: 32 entries

Load - Store Queue: 2 separate queues

of 64 entries each

Reorder Buffer 256 entries

L1D 64KB, 4way, 64B block, 2 cycle latency

Non-blocking, 12 primary misses,

4 secondary misses

16 write-buffer entries

L1I 32KB, 4 way, 64B block, 1 cycle latency

L2 unified 1MB, 16 way, 128B block, 8 cycle latency

Non-blocking, 12 primary misses

8 write-buffer entries

DTLB 512 entries. 10 cycles miss penalty

ITLB 512 entries. 10 cycles miss penalty

Main Memory 120 cycles of latency

Branch Predictor Gshare, 18-bit BHR, 64K entries PHT

10 cycles for misprediction recovery

Predicate Predictor Two predictors of 16KB each.

Gshare, 6-bit Global History.

6-bit of Adaptive Confidence Threshold

10 cycles for misprediction recovery

Table 1: Simulator parameter values used.

of simulating all the re-executions, only the last execution is
simulated. This model is more aggressive than the original
because it puts less pressure on the execution units. In ad-
dition, in our simple model, an instruction leaves the issue
queue when it has issued and all its sources and guarding
predicates are computed. This makes it also more aggres-
sive than the original because the replay mechanism requires
also that all its sources be non-speculative.

4.2 Results
Figure 9 compares the performance of the different schemes

as IPC speedups over the false predicated conditional move
technique. For most benchmarks, our selective predicate
prediction with adaptive threshold scheme significantly out-
performs the previous schemes. On average, it achieves a
17% speedup over the baseline, it outperforms the other
schemes by more than 11%, and it performs within 5% of
the perfect prediction scheme.

There are two cases where the upper-bound of the selec-
tive replay performs significantly better than selective pred-
icate prediction, vpr and twolf. For these benchmarks, more
than 90% of compare instructions are unconditional. How-
ever, for benchmarks where this fraction is very small, such
as apsi (2%), bzip2 (3%) or mesa (1%), the selective replay
technique performs much worse. On average, this technique
performs 6% better than the baseline. In fact, this tech-
nique is actually converting all predicate instructions to false
predicated conditional moves, which is the same as the base-
line does. The 6% performance speedup over the baseline
is achieved because the selective replay may execute sooner
instructions that are guarded with correctly predicted pred-
icates.

Figure 9: Performance comparison of selective pred-
icate prediction with previous schemes. False predi-

cated conditional moves has been taken as a baseline.

The select-µops technique has a bad performance for tex-
titbzip2 because of the large number of generated micro-
operations per commited instruction (43%). On the oppo-
site side, this technique achieves a good performance for mcf
which generates only 8% of micro-operations per commited
instruction. However, notice that mcf has a very low ipc,
so this speedup actually translates to a very small gain.

5. IMPLEMENTATION REMARKS
This section considers several cost and complexity issues

to compare the evaluated techniques.

The select-µop technique needs some special issue queue
entries to hold the micro-operations, with more tag com-
parators than regular entries. In addition, the RAT entries
are also extended to track multiple register definitions and
their guards. If the implementation supports many simul-
taneous register definitions, these extensions add a consid-
erable complexity to the rename logic and also to the issue
logic. On the other hand, if the implementation supports
only a few register definitions, then the mechanism may gen-
erate a lot of additional select-µops and performance may
degrade.

The selective replay mechanism needs to track several
data flows to avoid re-fetch of wrong predicted instructions.
Each issue queue entry is extended with one extra input
tag for every source register, and another for the destina-
tion register. This extensions increase considerably the is-
sue logic complexity. For instance, for instructions with two
source registers, one destination register and one predicate,
the number of comparators needed are six instead of three.

Our proposal also adds some complexity to the issue logic.
Predicated instructions without confidence are converted to
false predicated conditional moves, which require an extra in-
put tag for the destination register. If we consider the pre-
vious example, the number of comparators needed is four
instead of three. However, since not all instructions need
an extra tag, some hardware optimizations may be applied.
Our experiments show that only 16% of the predicated in-
structions are converted. Hence, the complexity increment
is lower than that of previous techniques.

6. SUMMARY AND CONCLUSIONS
In this paper we investigate the execution of predicated

code in out-of-order processors. There are two problems as-
sociated to predication in out-of-order processors: 1) mul-
tiple register definitions at the rename stage, 2) the con-
sumption of unnecessary resources by predicated instruc-
tions with its guard evaluated to false. Previous approaches
address only the first problem, without taking into account
the second one. In fact, these techniques increase resource
pressure, which reduces the potential benefits of predication.

We propose a new microarchitectural technique based on
predicate prediction to avoid multiple register definitions,
and minimize the consumption of unnecessary resources.
Since predicting the predicates undoes if-conversion trans-
formations, it may loose its potential benefits if not ap-
plied carefully. Therefore, our technique tries to dynam-
ically identify and predict only those predicates that come
from easy-to-predict branches. Instructions whose predicate
is not predicted are converted to false predicated conditional
moves. The selective mechanism is based on a confidence
predictor with an adaptive threshold that searches the best
trade-off between pipeline flushes and lost prediction oppor-
tunities.

Our results show that the selective predicate prediction
scheme outperforms other previous schemes by more than
11% on average, and it performs within 5% of an ideal
scheme with perfect predicate prediction. Moreover, the
proposed technique adds less hardware complexity to the
rename and issue logic than previous schemes.

7. ACKNOWLEDGEMENTS
This work is supported by the Spanish Ministry of Sci-

ence and Technology and FEDER funds of the EU under
contracts TIN 2004-03072, and TIN 2004-07739-C02-01, and
Intel Corporation.

8. REFERENCES
[1] Standard performance evaluation corporation. spec.

Newsletter, Fairfax, VA, September 2000.

[2] J. R. Allen, K. Kennedy, and C. P. an Joe Warren.
Conversion of control dependence to data dependence.
In POPL ’83: Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 177–189, New York,
NY, USA, 1983. ACM Press.

[3] D. I. August, W. mei W. Hwu, and S. A. Mahlke. A
framework for balancing control flow and predication.
In International Symposium on Microarchitecture,
pages 92–103, 1997.

[4] P.-Y. Chang, E. Hao, Y. N. Patt, and P. P. Chang.
Using predicated execution to improve the
performance of a dynamically scheduled machine with
speculative execution. In PACT ’95: Proceedings of
the IFIP WG10.3 working conference on Parallel
architectures and compilation techniques, pages
99–108, Manchester, UK, UK, 1995. IFIP Working
Group on Algol.

[5] W. Chuang and B. Calder. Predicate prediction for
efficient out-of-order execution. In ICS ’03:
Proceedings of the 17th annual international
conference on Supercomputing, pages 183–192, New
York, NY, USA, 2003. ACM Press.

[6] Compaq Computer Corporation. Alpha 21264
Microprocessor Hardware Reference Manual, 1999.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490,
1991.

[8] E. R. Erik Jacobsen and J. Smith. Assigning
confidence to conditional branch predictions. In
MICRO 29: Proceedings of the 29th annual
ACM/IEEE international symposium on
Microarchitecture, pages 142–152. IEEE Computer
Society Press, 1996.

[9] Freescale Semiconductor Inc. AltiVec Technology
Programming Environments Manual, 2002.

[10] Intel Corporation. Intel Itanium Architecture Software
Developer’s Manual. Volume 3: Instruction Set
Reference, 2002.

[11] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt. Wish
branches: Combining conditional branching and
predication for adaptive predicated execution. In
MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on
Microarchitecture, pages 43–54, Washington, DC,
USA, 2005. IEEE Computer Society.

[12] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I.
August, and W.-M. W. Hwu. A comparison of full and
partial predicated execution support for ilp processors.
In ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture,
pages 138–150, New York, NY, USA, 1995. ACM
Press.

[13] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun,
and A. Karunanidhi. Pinpointing representative
portions of large intel itanium programs with dynamic
instrumentation. In MICRO 37: Proceedings of the
37th annual IEEE/ACM International Symposium on
Microarchitecture, pages 81–92, Washington, DC,
USA, 2004. IEEE Computer Society.

[14] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A.
Blome, and D. I. August. Microarchitectural
exploration with liberty. In MICRO 35: Proceedings of
the 35th annual ACM/IEEE international symposium
on Microarchitecture, pages 271–282, Los Alamitos,
CA, USA, 2002. IEEE Computer Society Press.

[15] P. H. Wang, H. Wang, R. M. Klin, K. Ramakrishnan,
and J. P. Shen. Register renaming and scheduling for
dynamic execution of predicated code. In HPCA ’01:
Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, page 15,
Washington, DC, USA, 2001. IEEE Computer Society.

