
Boosting Mobile GPU Performance with a Decoupled Access/Execute
Fragment Processor

José-María Arnau1 Joan-Manuel Parcerisa1 Polychronis Xekalakis2

 jarnau@ac.upc.edu jmanel@ac.upc.edu polychronis.xekalakis@intel.com
1 Computer Architecture Department, Universitat Politècnica de Catalunya

2 Intel Barcelona Research Center, Intel Labs Barcelona
Abstract

Smartphones represent one of the fastest growing
markets, providing significant hardware/software
improvements every few months. However, supporting
these capabilities reduces the operating time per bat-
tery charge. The CPU/GPU component is only left with
a shrinking fraction of the power budget, since most of
the energy is consumed by the screen and the antenna.

In this paper, we focus on improving the energy effi-
ciency of the GPU since graphical applications consist
an important part of the existing market. Moreover, the
trend towards better screens will inevitably lead to a
higher demand for improved graphics rendering. We
show that the main bottleneck for these applications is
the texture cache and that traditional techniques for
hiding memory latency (prefetching, multithreading) do
not work well or come at a high energy cost.

We thus propose the migration of GPU designs
towards the decoupled access-execute concept. Fur-
thermore, we significantly reduce bandwidth usage in
the decoupled architecture by exploiting inter-core
data sharing. Using commercial Android applications,
we show that the end design can achieve 93% of the
performance of a heavily multithreaded GPU while
providing energy savings of 34%.

1. INTRODUCTION

The rapid development of smartphones is fueled by
the high end-user demand for a continuously improved
mobile computing experience. Current smartphones
excel in receiving and sending emails, allow for video
and picture editing and are able to support a plethora of
3D games. Unfortunately, supporting all these capabili-
ties comes at a high energy cost, which in turn results in
fairly short operating times per battery charge. Not sur-
prisingly, a recent study based on real users revealed
that most of the energy today is consumed by the com-
munications subsystem and the screen [3]. In Figure 1
we have plotted the energy consumed by each of these

two components of a Smartphone along with the capac-
ity of the battery over the past few years. The scaling
trend clearly supports the aforementioned observation.
The communication subsystem consumes most of the
energy today, while with each new generation, the
energy requirements grow significantly. The screens
exhibit a similar trend. Despite the introduction of the
lower-energy AMOLED screens, the increase in their
size and resolution, lead to an increase in the energy
they consume by 37% each year. The battery capacity
on the other hand, increases at a modest pace of 5-10%
per year [20].

Although the CPU/GPU component is arguably
more frequently used than the communication subsys-
tem, we believe that the trend is clear. If the operating
time of a Smartphone is going to stay at what it is
today, the energy that the CPU/GPU component will
have at its disposal will become even more limited with
each new generation of Smartphones. Interestingly, bet-
ter screens will require better graphics rendering, that
is, higher performing GPUs. Due to the highly parallel
nature of the applications that utilize the GPU, we
believe that the main complication that will have to be

2007 2009 2011 2013 2015

Year

E
n
e
rg
y
p
e
r
u
n
it
ti
m
e

2G

3G

4G

LCD 2.8"

AMLCD 3.5"

AMOLED 4.0"

Samsung S3C2442
400 MHz

Snapdragon
1 GHz

Snapdragon
dual-core 1 GHz

E
n
e
rg
y
c
a
p
a
c
it
y

Battery
capacity

Screen

Modem

CPU/GPU

Figure 1. Energy consumption evolution. The gap
between the energy provided by the battery and the

energy consumed by the main components increases on
each generation [3,10,21,25,30,31,32,33,34].

dealt with is how to bridge1 the memory gap in an
energy efficient manner.

Believing that today’s solutions to the memory
problem are mostly adaptations of solutions that exist
for desktop systems, we take a fresh approach in the
design of the GPU of a mobile system. More specifi-
cally, we opt for a solution that does not rely on multi-
threading to hide the memory latency, as we find it to
be effective but not energy-efficient (the register file of
an NVIDIA Fermi-like desktop GPU has been reported
to be about 9.6 Watts [8]). Moreover, as noted in
[12,15], existing prefetching solutions are viable solu-
tions for the pixel cache, but they cannot fully cope
with the seemingly random access patterns of the tex-
ture cache.

We thus propose to employ a decoupled access/exe-
cute design for the fragment processor. We apply our
proposal on top of a state-of-the-art GPU, similar to the
one that resides in the NVIDIA Tegra 2 chipset [18].
More specifically, the proposed scheme uses specifi-
cally designed queues to decouple the memory accesses
required for bringing all the pixel and texture data from
the computations that have to be performed on them. In
an effort to further push for minimizing the accesses to
the lower level memory, we also allow for pixel and
texture requests to be redirected to remote caches which
are known to have the requested data. The combined
effect of these two techniques yields significant perfor-
mance benefits, while keeping the additional energy
requirements to a minimal. We evaluate our proposal
using commercial Android applications and demon-
strate that we can achieve 93% of the performance of a
highly threaded GPU, with a much lower energy bud-
get.

This paper focuses on energy efficient, highly per-
forming GPUs. Its main contributions are the follow-
ing:
• We evaluate several state-of-the-art CPU, GPU

and GPGPU hardware prefetchers on a mobile
GPU. The results obtained in our cycle-accurate
GPU simulator indicate that these prefetchers pro-
vide significant benefits on performance although
they perform far from ideal, so there is still ample
room for improvement.

• We propose a new decoupled access/execute like
architecture specifically designed for low-power
GPUs and graphics workloads. This decoupled
architecture outperforms previous proposals in
terms of performance and energy consumption.

• We show that significant amounts of energy can be
saved by optimizing the bandwidth usage to the L2
cache. The end design is able to achieve similar
performance to a heavily-multithreaded GPU by
consuming only a fraction of its energy.

The remainder of this paper is organized as follows:
The next section provides background information on
the baseline GPU architecture and on the fragment pro-
cessor. Section 3 presents the proposed decoupled
access/execute architecture scheme. Section 4 describes
our evaluation methodology and Section 5 presents the
performance and power results that were obtained. Sec-
tion 6 reviews related work on smartphones, GPUs and
prefetching and finally, Section 7 provides our conclu-
sions.

2. BACKGROUND

The mobile GPU model that is assumed throughout
the paper closely tracks the ultra-low power GeForce
GPU in the NVIDIA Tegra 2 chipset [18] (Figure 3).
Although the focus of the paper is on the Fragment Pro-
cessor component, a brief description of the assumed
GPU will be presented first so as to ensure complete-
ness.

2.1 Basic GPU Operation

The application OpenGL ES command stream is
first converted by the OpenGL ES driver to a sequence
of GPU commands. When the Command processor
receives a command, it installs the corresponding ver-
tex and fragment shaders and sets the appropriate con-
trol signals so that the input vertex stream is correctly
processed through the GPU pipeline. Having config-
ured the pipeline, the Vertex Fetcher is triggered so that
the input vertices are fetched from memory with all the
per-vertex information and stored in the first vertex
queue. Next, vertices are transformed and shaded in the
Vertex shader stage, based on the programmed by the
user vertex shader. The transformed and shaded verti-
ces are then passed to the Primitive Assembly stage. At
this stage the vertices are grouped into the correspond-
ing triangles and clipping and culling are applied. The
resulting 2D triangles are inserted into the triangle
queue. Next, the Rasterizer takes these 2D triangles and
generates the corresponding fragments that lie inside
the triangles. The resulting fragments are inserted into
the fragment queue, and are processed in the Fragment
shader stage based on the programmed by the user frag-
ment shader.

There is a variety of caches utilized throughout the
pipeline of this GPU. More specifically, the vertex
fetcher employs a vertex cache, while the fragment
shader includes a Pixel and a Texture cache. These

1. For a Tegra like system, we found that if no threading is utilized
to hide the latency, the performance hit for a set of 3D Games for
the Android is 140%. A Tegra with perfect caches can provide up
to 285% over the non-threaded version.

caches are all assumed to be connected via a shared bus
to the L2 cache of a CPU/GPU system.

2.2 Fragment Processor

The fragment processor consists of a fairly simple
in-order four stage pipeline. Typically, a form of SMT
is employed where the threads are organized in groups
named warps. All threads in a warp are executed in
lockstep mode, that is the same instruction is executed
by all the threads but each thread operates on a different
input fragment. The warp scheduler determines from
which warp to fetch an instruction every cycle by using
a Round Robin policy.

After instructions are fetched, they are decoded and
their operands are fetched. Depending on the type of
the operand, one of the three different register files are
probed, depending on the type of value that needs to be
read (i.e., constant, input or temporal). In the Instruc-
tion Decode stage, the valid bits of the source registers
are checked to avoid RAW hazards. Whenever a data
dependency is found, the dependent instruction and all
the younger instructions of the same warp are squashed
and the PC of the warp is set to the PC of the dependent

instruction. Moreover, the valid bit of the destination
register is also checked to avoid WAW hazards.

Once all the source operands for the threads in a
warp are fetched the instruction is dispatched to the cor-
responding functional unit. Operand buffering is
required since the number of functional units can be
smaller than the number of threads in a warp, in this
case the dispatch to the functional units takes several
cycles. Four types of functional units are included in
each fragment processor, namely the SIMD ALU (i.e,
vector additions), the Special Functions Unit (i.e.,
reciprocal operations), the Memory Unit (i.e., load/
stores to the color buffer), and the Texture Unit (i.e.,
compute the color of a texture).

In the last pipeline stage the results of the functional
units are stored in the temporal or in the output register
file. There is no forwarding mechanism, so two depen-
dent instructions cannot be executed back-to-back.
However, since the warp scheduler uses a Round Robin
policy consecutive instructions usually pertain to differ-
ent warps.

3. DECOUPLED ACCESS/EXECUTE ON
A MOBILE GPU

The fragment processors fetch data from texture
memory and access pixels in the framebuffer. Each
fragment processor includes two caches to speed-up
these memory accesses: a pixel cache and a texture
cache. Most desktop GPUs rely on massive multi-
threading as an effective way to hide memory latency
and keep functional units busy during cache misses.
However, the simultaneous execution of multiple warps
requires an equal number of thread contexts, which
greatly increases the number of registers. Since this
approach is power-hungry, it is not deemed appropriate
for battery-operated handheld devices such as smart-
phones with a very limited energy budget. In fact, the
number of simultaneous warps of a low-power GPU is
usually small due to power constrains, which in turn
results in cache misses producing pipeline stalls that
cannot be hidden.

3.1 Prefetching

A known solution to tolerate the cache miss latency
is prefetching. Since there is no publicly available
information about hardware prefetchers in the fragment
processors of current GPUs, we assume that they do not
include any. Nonetheless, in this paper we review how
prefetchers that were previously proposed for CPUs,
like the Stride [5] and the GHB [17], work in this new
environment. We also study how a more tailored to the
GPU needs prefetcher works (Many-Thread-Aware
[15]). Our experiments show that these schemes pro-

Figure 2. Microarchitecture of Tegra-like GPU.

Figure 3. Microarchitecture of a Fragment Processor.

vide moderate latency tolerance but, compared to an
ideal prefetcher, they still leave ample room for
improvement. Moreover, their performance improve-
ments come at the cost of a significant increase in
energy consumption caused by the useless prefetches
they generate.

3.2 Access/Execute Decoupling

We propose to adopt a more energy-efficient
prefetching approach to hide memory latency, which is
based on the access/execute architectural paradigm
[24]. Traditionally, an access/execute architecture
divides the program into two independent instruction
streams, one doing memory accesses and the other per-
forming actual computations. By decoupling memory
accesses from computations, access/execute architec-
tures effectively prefetch data from memory much in
advance from the time it is required, thus allowing
cache miss latency to overlap with useful computations
without causing stalls. While this can be viewed as a
form of data prefetching, it has a substantial advantage
over other prefetching schemes, because it relies on
computed rather than predicted addresses, which trans-
lates into a higher accuracy and a lower energy waste.

Despite the high potential of access/execute archi-
tectures to tolerate a long memory latency at a moderate
hardware cost, they have not been widely adopted by
current commercial CPUs because their effectiveness is
greatly degraded when the computation of an address
has a data or control dependence on the execution
stream (this occurs, for instance, in pointer chasing
codes). In such circumstances, termed loss of decou-
pling events (LOD), the access stream is forced to stall
in order to synchronize with the execution stream.
LODs force the access stream to lose its timeliness (i.e.
the prefetch distance), so that subsequent cache misses
will cause the execution stream to stall as well. Unfor-
tunately, for general purpose CPUs the frequency of
LODs is quite significant in many cases, resulting in
fairly restricted performance gains. However, for GPU
fragment programs, the access patterns are typically
free of the dependences that cause LODs. This makes
the access/execute paradigm a perfect fit for the
requirements of a low-power high-performance GPU:
with few extra hardware requirements, it can reduce
drastically the number of cache miss stalls.

3.3 The Access/Execute Decoupled Fragment
Processor

The decoupled access/execute architecture pro-
posed in this paper is depicted in Figure 4. After the
visibility determination in the Early Depth Test stage
(shown in Figure 2), visible fragments are packed into
tiles, a fragment processor is assigned to each tile by

the scheduler, and both the tile and the processor num-
ber are inserted into the tile queue to wait its turn until
it is dispatched to the processor. Part of the information
stored in this tile queue (screen coordinates, texture
coordinates, etc.) will be later used by the fragment pro-
cessor to compute the addresses that will be issued to
memory.

The proposed scheme decouples the memory
addresses from the tile queue, so that memory requests
for a specific tile can be issued, while the tile is still
waiting in the queue. This behavior is achieved by
inserting all computed addresses of a tile along with
their target cache number, into a new queue, the
prefetch queue. Notice that the scheduling is performed
before queuing the tile, so that the prefetcher knows to
which caches it must send the requests. We assume that
a new request from the prefetch queue is sent to the cor-
responding cache every cycle until the queue is drained.
For each request, the corresponding cache controller
will check the tags (by using a dedicated snoop port),
and the request will be either ignored in case of a hit, or
trigger a preemptive block fetch to L2, and a subse-
quent L1 cache update. Note also that the proposed
scheme performs in-cache prefetching, instead of
prefetching into specialized buffers.

By the time a tile is dispatched to the fragment pro-
cessor, the data required to process the fragments are
usually available in the pixel and texture caches, so that
almost all processor cache accesses hit. Should the
prefetch requests not be issued enough in advance, the
fragment processor would experience a cache miss
stall. This would cause the tile queue to fill up, but it
would also allow the prefetcher to increase the prefetch
distance again, thus avoiding further stalls. The tile
queue must be sized long enough -this mostly depends
on miss latency- to allow the prefetcher to gain suffi-
cient prefetch distance to achieve timeliness. But it
must also avoid excessive length that could lead to late
requests evicting yet-to-be-used prior prefetched data,

Figure 4. Decoupled access/execute architecture.

due to cache conflicts. We have found that lenghts
between 4 and 32 are appropriate for our workloads. It
is also important to design the prefetcher with sufficient
throughput to avoid losing the prefetch distance, so we
assume it is non-blocking, i.e. multiple pending blocks
may be in-flight at any time. The necessary control
information for each pending block is held in the
prefetch queue.

3.4 Prefetching from other L1 caches

Partitioning the L1 cache among the various frag-
ment processors reduces the size of each individual
cache and the power required per access, but also pro-
duces some degree of replication. The results obtained
by using our GPU simulator and a commercial set of
graphical applications show that, on average, 40.7% of
the prefetch requests are cache misses, and that 66.3%
of these misses are requests to data that is already avail-
able in the pixel or in the texture cache of some other
fragment processor. Hence, the decoupled access/exe-
cute architecture previously described can be further
improved because up to 66.3% of the prefetch misses
can be satisfied by the L1 pixel or texture cache of
another fragment processor instead of accessing the L2.
This improvement saves bandwidth to the shared L2
cache and reduces energy consumption since accessing
to the L2 cache is more expensive than accessing a L1
pixel or texture cache.

A naive approach could check the tags of all the
caches at the time a prefetch request is dispatched to
know which caches could satisfy the request in case of
a miss. While this would provide precise information, it
would also have a significant energy cost. Instead, we
propose to take advantage of the temporal locality that
exists in the memory requests in order to achieve simi-
lar performance with only a small fraction of the
energy. More specifically, we propose to augment each
entry in the prefetch queue with a new field, called
Source, that will hold the predicted alternate location of
the block. Each time a new prefetch request is inserted
in the queue, the addresses of all the queued requests

are associatively compared with the new address. If
there is a match with a prefetch request for a different
cache, the identifier of this cache is recorded in the
Source field of the new entry. If there is no match, the
identifier of the L2 cache is recorded instead. When the
prefetch request is dispatched to its target cache the
Source field is included in the request. This information
is then used by the cache controller to redirect the
request in case of a cache miss. Figure 5 shows an
example of this behavior. Compared with the full tag
check approach mentioned earlier, this technique only
looks in a small window of recent requests (equal to the
number of pending requests held in the queue). Alterna-
tively, we could implement the queue as a circular buf-
fer, where the entries between the head and the tail are
considered active and the rest are not. In this case, pro-
vided that the inactive entries are not cleared, they still
hold the addresses and target cache identifiers. Each
new request can then be compared against “all” the
queue entries, either active or not, thus widening the
window of recent requests to the total length of the
queue. In order to increase the energy efficiency, we
restrict the associative search to the eight lower bits of
the block address. Since the high bits of the addresses
typically do not change frequently, this approach
decreases the cost of the search while keeping the same
performance.

4. EVALUATION METHODOLOGY

We have developed a mobile GPU simulation infra-
structure which consists of two components: the GPU
trace generator and the cycle-accurate GPU simulator.
For the trace generation we have instrumented the
Android OpenGL ES software renderer in order to cap-
ture all the OpenGL ES calls performed by the applica-
tions and to gather information about the rendering
process. The trace file includes the vertex and fragment
instructions and the memory addresses of the texture
and vertex data and the framebuffer. Although the
instrumented Android OpenGL ES driver is a pure soft-

Figure 5. Example of how the decoupled access/execute architecture can take benefit of data reusage among L1 caches of
different fragment processors to save L2 bandwidth.

(a) A new prefetch request
to address 8 in texture
cache 1 is sent to the
prefetch queue.

(b) The request is inserted
in the queue. The Source
field points to texture cache
0.

(c) The request at top of the
queue is dispatched to the
corresponding cache.

(d) After several cycles the
request is sent to texture
cache 1. The Source field is
included.

(e) Cache miss. The
prefetch request is redi-
rected to texture cache 0
instead of L2.

ware renderer, the trace generator does not save a com-
plete memory trace of all the accesses performed by the
driver, but it only saves the addresses of the memory
accesses that would be issued in a hardware-based
implementation (accesses to fetch vertex and texture
data and to read/write the framebuffer). The generated
traces are fed to a cycle-accurate GPU simulator which
apart from timing, is also able to provide energy esti-
mations. The simulator models the GPU architecture
illustrated in Figure 2. For the vertex and fragment pro-
cessors, the simulated microarchitecture is the one
shown in Figure 3. The GPU simulator is also able to
model the decoupled access/execute architecture
described in Section 3. Moreover, several prefetching
schemes extracted from the literature have been imple-
mented in the simulator: the stride prefetcher [5], the
Global History Buffer (GHB) [17], and the many-
thread aware prefetcher with throttling [15]. The
parameters employed during the simulations are sum-
marized in Table 1.

Regarding the workloads, we have selected 8
Android games that are representative of the Android
graphical applications since they employ most of the
configurations available in the OpenGL ES API (differ-
ent texture sampling strategies, shading models,
antialiasing on/off...). We have included simple 2D
games (angryfrogs, icommando and pocket-
racing), simple 3D games (polybreaker and
shooting) with simple 3D models and small frag-
ment programs and more complex 3D games

(quake2, ibowl and tankrecon) with bigger 3D
models and heavy fragment programs.

We have generated traces of 1 billion instructions
for each application, these traces consist of 10 check-
points of 100 million instructions at 10 different loca-
tions. We correctly warm up the simulator before
collecting statistics for each checkpoint. Regarding the
power model, we have employed CACTI [23] to com-
pute the static and dynamic energy consumed by the
main hardware structures: caches, queues, register files
and prefetching tables.

5. EXPERIMENTAL RESULTS

This section demonstrates the effectiveness of a
decoupled access/execute architecture in hiding the
memory latency of a mobile GPU. We first evaluate the
performance achieved and the energy consumed by dif-
ferent prefetching techniques when executing a com-
mercial set of Android games. We assume a pure
decoupled access/execute architecture without multi-
threading (1 warp per fragment processor) for these
experiments. Figure 6 shows the speedups over the
Global History Buffer (GHB) prefetcher. The simplest
prefetching scheme, the stride prefetcher, obtains better
results than the GPU without prefetching, achieving
65% of the performance of the GHB on average. The
Many-Thread Aware (MTA) prefetcher provides similar
performance to the GHB. Although the experimental
conditions (small number of threads, non-regular mem-
ory access patterns) are not favorable for the MTA

Table 1: GPU simulator parameters.
Queues Vertex processor

Vertex Queue (2x) 16 entries, 136 bytes/entry Multithreading 1-16 warps, 4 threads/warp
Triangle Queue 16 entries, 388 bytes/entry Register size 16 bytes (4-wide vector)
Fragment Queue 64 entries, 57 bytes/entry Constant Reg. File 96 registers
Tile Queue 8 entries, 233 bytes/entry Input Reg. File 64 regs/warp, 4 banks

Caches Output Reg. File 32 regs/warp, 4 banks
Vertex Cache 64 bytes/line, 4-way associative, 8 KB, 4 in-flight

requests, 4 banks, 3 cycles
Temporal Reg. File 48 regs/warp, 4 banks
Functional Units 4 SIMD ALUs, 4 SFUs

Pixel and Texture
Caches

64 bytes/line, 2-way associative, 2 KB, 4 in-flight
requests, 4 banks, 2 cycles

4-stage pipeline IF, ID, Exec, WB
Fragment processor

L2 Cache 64 bytes/line, 8-way associative, 32 KB, 8 in-
flight requests, 8 banks, 12 cycles

Multithreading 1-16 warps, 4 threads/warp
Register size 16 bytes (4-wide vector)

Non-programmable stages Constant Reg. File 96 registers
Primitive assembly 1 triangle/cycle Input Reg. File 64 regs/warp, 4 banks
Rasterizer 4 fragments/cycle Output Reg. File 32 regs/warp, 4 banks
Early Z test 8 in-flight fragments, 1 pixel cache Temporal Reg. File 48 regs/warp, 4 banks

Programmable stages Functional Units 4 SIMD ALUs, 4 SFUs, 2 MEM, 2 texture units
Vertex shader 4 vertex processors Caches 1 texture and 1 pixel cache
Fragment shader 4 fragment processors 4-stage pipeline IF, ID, Exec, WB

Main memory Distance prefetcher
Latency 100 cycles Index table 16 entries, 40 bits/entry
Bandwidth 4 bytes/cycle (dual channel) GHB 100 entries, 40 bits/entry

Decoupled access/execute Prefetch degree 2
Prefetch queue size 16 entries Many-thread aware prefetcher with throttling
Entry size 40 bits Global Stride table 16 entries, 64 bits/entry
Total size 640 bits Inter-thread Pref. Table 16 entries, 66 bits/entry,

Global parameters Per-Warp Stride table 16 entries, 164 bits/entry
Frequency 600 MHz Prefetch degree 0-5 (dynamically adapted)
Voltage 1 V Stride prefetcher
Screen resolution 800x480 (WVGA) Stride table size 48 entries
Technology 45 nm Entry size 98 bits

Prefetch degree 2

prefetcher, it obtains 90% of the performance of the
GHB prefetcher on average and it achieves better
results in one of the applications (ibowl). The decou-
pled access/execute architecture performs better than
the GHB on average (2.9% speedup). The decoupled
access/execute with the bandwidth usage optimizations
provides the best performance in all the applications
(33% speedup on average). The performance improve-
ments in this graph are due to a large reduction in miss
stall cycles achieved by prefetching, specially for the
access/execute scheme, since it greatly improves
prefetch accuracy, as shown in Figure 7. This graph
plots the amount of useless prefetching, i.e. the fraction
of prefetched blocks that are never demanded by the
processor. The performance advantage of the optimized
scheme comes from the reduced latency of prefetch
misses that can be satisfied from other local caches,
because this improves timeliness of prefetching (more
hits) and reduces cache miss stall time (shorter miss
penalty).

Limited battery lifetime is a hard requirement for
smartphones. Hence, the energy consumption is a pri-
mary concern for any architectural innovation. Figure 8
shows the total energy consumed by different prefetch-
ing schemes, considering both the static and dynamic
consumption. All the prefetchers provide energy sav-
ings over a GPU without prefetching. The GHB and
MTA exhibit similar energy consumption, whereas the
optimized decoupled access/execute architecture pro-

vides 9% energy savings on average with respect to the
GHB. Although a bit surprising, the spent energy
decreases as performance increases. The access/execute
configuration consumes less energy than the baseline
because the small increase in dynamic activity (some
useless prefetched blocks, double L1 tag checks and
associative lookups into the prefetch queue) is more
than compensated by a large reduction in execution
time (hence a reduction in static energy consumption).
Recall that we do not assign any static energy consump-
tion during long idle periods because we assume that
the processor could drastically reduce it by entering a
deep low power state. To summarize the prefetching
analysis, we have seen that the decoupled access/exe-
cute architecture provides 33% speedup and 9% energy
savings over state-of-the-art prefetchers.

Moreover, we have evaluated the effects of multi-
threading on a low-power GPU without prefetching.
Figure 9 shows the speedups obtained when increasing
the number of simultaneous warps from 1 to 16. Multi-
threading provides significant benefits, with an average
speedup of 3.23x for 16 warps. However, aggressive
multithreading increases energy consumption as shown
in Figure 10. For a small number of warps (2 to 4) we
get energy savings in some of the applications because
the reduction in static energy, due to the reduction in
execution time, is bigger than the increase in dynamic
energy due to the larger size of the main register file.
However, when using aggressive multithreading (6-16
warps) the energy consumption is increased in most of
the applications, with an average increment of 25% for
16 warps.

We have also analyzed the performance and energy
consumption of a mobile GPU when combining both
prefetching and multithreading. The results are illus-
trated in Figure 11. This graph shows that the optimized
access/execute prefetcher achieves its maximum
speedup with just 4 warps, whereas the baseline needs
14-16 warps to achieve the same performance. The
other prefetchers lay in between. The graph also shows
that the single threaded access/execute architecture can

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p

angry
frogs ibowl icommando

pocke
tracin

g
polybr

eaker quake
2

shooti
ng

tankre
con

GEOM
EAN

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

No prefetching (NP)

Stride (S)

Many-Thread Aware (MTA)

Decoupled (D)

Decoupled Optimized (DO)

Figure 6. Speedups of different prefetching schemes and
the decoupled access/execute architecture. The baseline
configuration is the Global History Buffer. Multithreading

is not employed.

0

5

10

15

20

25

30

35

40

%
u
s
e
le
s
s
p
re
fe
tc
h
in
g

Texture cache Pixel cache

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

Stride (S)

Global History Buffer (GHB)

Many-Thread Aware (MTA)

Decoupled (D)

Decoupled optimized (DO)

0.33% 0.17%

Figure 7. Useless prefetching. The decoupled schemes are
more accurate than conventional prefetchers since they

are not based on predictions.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

N
o
rm

a
li
z
e
d
e
n
e
rg
y

angry
frogs ibowl icommando

pocke
tracin

g
polybr

eaker quake
2

shooti
ng

tankre
con

GEOM
EAN

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

N
P

S M
TA

D D
O

2.035

1.54

No prefetching (NP)

Stride (S)

Many-Thread Aware (MTA)

Decoupled (D)

Decoupled Optimized (DO)

Figure 8. Energy consumed by the different prefetching
schemes normalized to the energy consumed by the

Global History Buffer. Multithreading is not employed (1
warp per fragment processor).

still improve performance by taking advantage of a
small degree of multithreading (e.g. 4 warps). This
small amount of threads allows the architecture to hide
the latency of the functional units and keep them busy,
which is an issue that the access/execute decoupling
mechanism does not address. It is worth noting that
similar conclusions about the synergy of decoupling
and multithreading were already suggested in [19].
Regarding energy consumption, Figure 12 compares
the energy and speedup of the different prefetching
schemes normalized to the baseline GPU without
prefetching. The decoupled architecture with 1 warp
achieves 78% of the performance of the baseline GPU
with 16 warps, but consuming 35% less energy. More-
over, the decoupled system with 2 warps provides 93%
of the performance of a GPU with 16 warps and it con-
sumes 34% less energy. Hence, combining decoupled
access/execute -to hide the memory latency- and non-
aggressive multithreading -to hide the functional units
latency- is an interesting approach to boost perfor-
mance with a low cost in energy.

Finally, in order to evaluate the effectiveness of the
L2 cache bandwidth optimizations described in Section
3 we measured the L2 cache traffic. Figure 13 illus-
trates the results. The state-of-the-art prefetchers
(stride, GHB and MTA) increase L2 cache traffic due to
additional memory requests for prefetching. The decou-
pled access/execute architecture increases L2 cache
traffic by 73% on average, whereas the optimized ver-
sion increases L2 cache traffic just by 24%. Hence, try-
ing to obtain the data from the pixel or texture cache of

another processor instead of the L2 cache produces a
significant reduction in L2 cache traffic.

6. RELATED WORK
Increasing the efficiency and performance of GPUs

has attracted the attention of the architectural commu-
nity the last few years. Fung et al. [6] propose the
dynamic formation of warps to deal with diverging
branch outcomes. Tarjan et al. [26] introduce a hard-
ware technique to allow a subset of the threads in a
warp to continue execution while the rest of the threads
are waiting on memory. Woo et al. [29] propose the use
of the GPU to perform data prefetching for the CPU.
Hong et al. [11] present an analytical power and perfor-
mance model for GPU architectures. The efforts to
reduce register file power on a GPU include the register
file cache and the two-level warp scheduler proposed
by Gebhart et al. [8], and the hybrid SRAM-DRAM
memory design presented by Yu et al. [28]. In contrast
with our work, all these proposals do not directly focus
on the memory aspect of the GPU performance. We
show that there is no real necessity for high degree of
multithreading and as such for large register files. On
the other hand, the abovementioned research is focused
on GPGPU workloads, whereas our study targets
graphical applications. General purpose codes employ
complex addressing modes that can cause loss of
decoupling events, reducing the effectiveness of decou-
pled access/execute architectures. However we believe

0

1

2

3

4

5

6

7

8
S
p
e
e
d
u
p

angry
frogs ibowl icommando

pocke
tracin

g
polybr

eaker quake
2

shooti
ng

tankre
con

GEOM
EAN

2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6

2 warps

4 warps

6 warps

8 warps

10 warps

12 warps

14 warps

16 warps

Figure 9. Multithreading speedups. The figure shows the
performance benefits obtained when increasing the num-

ber of simultaneous warps.

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
li
z
e
d
e
n
e
rg
y

angry
frogs ibowl icommando

pocke
tracin

g
polybr

eaker quake
2

shooti
ng

tankre
con

GEOM
EAN

2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6
2 4 6 8 1
0
1
2
1
4
1
6

2 warps

4 warps

6 warps

8 warps

10 warps

12 warps

14 warps

16 warps

Figure 10. Normalized energy for different number of
warps.

0 2 4 6 8 10 12 14 16 18

Number of warps

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
u
p

Decoupled Optimized

Global History Buffer

Many-Thread Aware

Stride

Baseline

Figure 11. Speedups of different prefetchers when
increasing the number of warps from 1 to 16. The baseline

is a GPU without prefetching and 1 warp/core.

1.0 1.5 2.0 2.5 3.0 3.5

Speedup

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o
rm

a
li
z
e
d
e
n
e
rg
y

1 warp 2 warps

4 warps

6 warps

8 warps

10

12
14 warps

16 warps

1 warp
2 warps

4 warps

6

8

10 warps

12 warps

14 warps

16 warps

1 warp

2 warps

4 warps

6

8
10

12

14

16 warps

1 warp 2 warps

4 warps

6 warps

8 warps

10

12

14

16 warps
No Prefetching (Baseline)

Global History Buffer

Many-Thread Aware

Decoupled Optimized

Figure 12. Normalized energy vs speedup. The decoupled
architecture achieves nearly the same performance than a
heavily multithreaded GPU at a much lower energy budget.

that mobile phones are not the ideal platform for scien-
tific applications, so our research is focused on more
typical workloads for smartphones, such as games.

Recently, research in the field of mobile GPUs has
emerged. Akenine-Möller and Ström [2] propose a ras-
terization architecture for mobile devices that employs
a novel texture compression system to reduce memory
bandwidth usage by 53%. Our work is also focused on
reducing bandwidth, but we achieve bandwidth savings
by exploiting inter-core data sharing. Mochocki et al.
[16] explore the use of Dynamic Voltage and Fre-
quency Scaling to reduce the energy consumption of a
mobile GPU by as much as 50%.

Lee et al. [15] propose a prefetching scheme specif-
ically designed for many-thread environments. This
prefetcher employs several mechanisms such as inter-
thread prefetching and stride promotion to boost GPU
performance when executing scientific codes. We have
shown that similar results can be achieved for mobile
applications, however as we have also shown, the pro-
posed scheme is able to be consistently better.

Tarjan et al. [27] propose the sharing tracker, a sim-
plified directory employed to capture inter-core reusage
among the private non-coherent caches of a GPU. Our
decoupled system is also able to exploit data sharing,
but at a smaller energy cost by using the prefetch
queue. On the other hand, several tiled-cache
approaches have been proposed. Reactive NUCA [9]
introduces fixed-center clusters and rotational interleav-
ing on a distributed shared L2 cache, these novel mech-
anisms provide high aggregate capacity while
exploiting fast nearest-neighbour communication.
NoC-aware cache design [1] introduces a first-touch
data placement policy, a migration policy that moves
each block to its most frequent sharer and a replace-
ment policy that is biased towards retaining shared
blocks and replacing private ones. DAPSCO [7] con-
sists on a distance-aware cache organization that mini-
mizes the average distance travelled by cache requests.

In our system the L2 cache is centralized instead of dis-
tributed, since the number of cores in a mobile GPU is
much smaller than what is assumed in a many-core sys-
tem due to power constrains. Furthermore, the tiled-
cached systems use the hardware-coherence mecha-
nisms (directory) to detect data sharing among the first
level caches, whereas we employ the prefetch queue to
detect data reusage among non-coherent L1 caches at a
much smaller energy budget (hardware-coherent caches
are considered too expensive for GPUs [27]).

Crago et al. [4] present OUTRIDER, a decoupled
system for throughput-oriented processors. OUT-
RIDER is similar to our proposal since it also employs
a decoupled access/execute architecture to hide the
memory latency with fewer threads. However, our sys-
tem reduces hardware complexity, does not require
compiler assistance to generate the instruction streams
and it is able to detect inter-core data sharing. On the
other hand, OUTRIDER offers better tolerance to
LODs by using multiple memory access streams, so it
is best suited for scientific applications whereas our
system is best suited for graphical workloads.

The work that is closest to ours is that of Igehy et al.
[12]. In their paper, they propose a prefetching architec-
ture for texture caches to hide the memory latency. This
prefetcher is similar to our decoupled system, however,
our work is different in several ways. First, our system
is built on top of a modern mobile GPU where the Z-
Test stage is performed before the fragment processing.
This is an important difference as our system only
issues prefetch requests for visible fragments instead of
prefetching for all the fragments generated by the Ras-
terizer, increasing the energy efficiency. Moreover, our
scheme is able to coordinate the accesses in an environ-
ment with multiple fragment-processors. Finally, our
proposal allows for remote requests, which is shown to
provide significant energy benefits.

7. CONCLUSIONS
The main ambition of this paper is to demonstrate

that high-performing, energy-efficient GPUs can be
architected based on the decoupled access-execute
design paradigm. The proposed scheme does not rely
on heavy multithreading so as to hide the memory
latency. Although multithreading is still useful, we
believe that a significant part of its benefits can be
achieved in a more energy efficient fashion. In fact, as
it was shown in this paper, a combination of access/
execute with multithreading provides the most energy
efficient solution. More specifically, we claim that it is
better to hide the memory latency using the decoupled
access/execute paradigm and hide the functional unit
latency using a low degree of threading. We focus our
study in Smartphones, as it is one of the fastest growing

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
li
z
e
d
L
2
tr
a
ff
ic

angry
frogs ibowl icommando

pocke
tracin

g
polybr

eaker quake
2

shooti
ng

tankre
con

GEOM
EAN

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

S G
H
B

M
TA

D D
O

Stride (S)

Global History Buffer (GHB)

Many-Thread Aware (MTA)

Decoupled (D)

Decoupled Optimized (DO)

Figure 13. Normalized L2 cache traffic. The optimized
decoupled architecture increases the L2 cache traffic by
24% on average, whereas the GHB and the MTA prefetch-

ers cause increments of 111% and 86% on average
respectively. The Stride prefetcher increases traffic by
just 18% on average with respect to a single threaded

GPU without prefetching.

markets, while it is also energy constrained. We evalu-
ate the proposed scheme using a set of commercial
Android applications and show that the end decoupled
access/execute design with 2 warps/core is able to
achieve 93% of the performance of a larger GPU with
16 warps/core, while providing 34% energy savings.
Moreover, we show that a significant percentage of L2
cache bandwidth can be saved by redirecting pixel
requests to remote texture caches which are known to
have the requested data. Compared with prefetchers
that were previously proposed for CPUs, the decoupled
access/execute architecture clearly outperforms them,
as it is 33% faster than the Global History Buffer while
it also consumes 9% less energy.

Acknowledgments
This work has been supported by the Generalitat de

Catalunya under grant 2009SGR-1250, the Spanish
Ministry of Economy and Competitiveness under grant
TIN 2010-18368, and Intel Corporation. Jose-Maria
Arnau is supported by an FI-Research grant.

REFERENCES
[1] A. K. Abousamra, R. G. Melhem, A. K. Jones. “NoC-

aware cache design for chip multiprocessors”. In Proc. of
PACT, pp. 565-566, Sept. 2010.

[2] T. Akenine-Möller and J. Ström. “Graphics for the
masses: a hardware rasterization architecture for mobile
phones”. In Proc. of SIGGRAPH, pp. 801-808, July 2003.

[3] A. Carroll and G. Heiser. “An analysis of power con-
sumption in a smartphone”. In Proc. of USENIXATC, pp.
21-34, June 2010.

[4] N. C. Crago and S. J. Patel. “OUTRIDER: efficient mem-
ory latency tolerance with decoupled strands”. In Proc. of
ISCA, pp. 117-128, June 2011.

[5] John W. C. Fu, Janak H. Patel, and Bob L. Janssens.
“Stride directed prefetching in scalar processors”. SIGMI-
CRO Newsl., pp. 102-110, Dec. 1992

[6] Wilson W. L. Fung, I. Sham, G. Yuan and T. M. Aamodt.
“Dynamic Warp Formation and Scheduling for Efficient
GPU Control Flow”. In Proc. of MICRO, pp. 407-420,
Dec. 2007.

[7] A. García-Guirado, R. Fernández-Pascual, A. Ros and J.
M. García. “DAPSCO: Distance-aware partially shared
cache organization”. In ACM Trans. on Arch. and Code
Optimization, 8 (4), Jan. 2012.

[8] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W.
J. Dally, E. Lindholm and K. Skadron. “Energy-efficient
mechanisms for managing thread context in throughput
processors”. In Proc. of ISCA, pp. 235-246, June 2011.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki.
“Reactive NUCA: near-optimal block placement and rep-
lication in distributed caches”. In Proc. of ISCA, pp. 184-
195, June 2009.

[10] Hewlett-Packard. “HP ProBook 5330m Notebook PC
Overview”. http://h18000.www1.hp.com/prod-
ucts/quickspecs/14018_na/14018_na.HTML.

[11] S.Hong and H.Kim.“An integrated GPU power and per-
formance model”.In Proc. of ISCA,pp.280-289,June 2010.

[12] H. Igehy, M. Eldridge and K. Proudfoot. “Prefetching in a
texture cache architecture”. In Proc. of SIGGRAPH/

EUROGRAPHICS workshop on Graphics Hardware, pp.
133-142, Aug. 1998.

[13] D. Joseph and D. Grunwald. “Prefetching using markov
predictors”. In Proc. of ISCA, pp. 252-263, June 1997.

[14] G. B. Kandiraju and A. Sivasubramaniam. “Going the
distance for tlb prefetching: an application-driven study”.
In Proc. of ISCA, pp.195-206, 2002

[15] J. Lee, N. B. Lakshminarayana, H. Kim and R, Vuduc.
“Many-Thread Aware Prefetching Mechanisms for
GPGPU Applications”. In Proc. of MICRO, pp. 213-224,
December 2010.

[16] B. Mochocki, K. Lahiri and S. Cadambi. “Power analysis
of mobile 3D graphics”. In Proc. of DATE, pp. 502-507,
March 2006.

[17] K. J. Nesbit and J. E. Smith. “Data Cache Prefetching
Using a Global History Buffer”. In Proc. of HPCA, pp.
96-105, February 2004.

[18] NVIDIA. Bringing High-End Graphics to Handheld
Devices. 2011. http://www.nvidia.com/content/
PDF/tegra_white_papers/Bringing_High-
End_Graphics_to_Handheld_Devices.pdf.

[19] J.-M.Parcerisa and A. González. "Improving Latency Tol-
erance of Multithreading through Decoupling". IEEE
Transactions on Computers, vol. 50, no. 10, pp. 1084-
1094, October 2001.

[20] K. Pulli, T. Aarnio, K. Roimela and J. Vaarala. “Design-
ing Graphics Programming Interfaces for Mobile
Devices”. In Proc. of IEEE Computer Graphics and
Applications, pp. 66-75, Nov. 2005.

[21] Qualcomm. “Two-Headed Snapdragon Takes Flight”.
http://www.qualcomm.com/documents/files/
linley-report-dual-core-snapdragon.pdf.

[22] J. W. Sheaffer, D. Luebke and K. Skadron. “A flexible
simulation framework for graphics architectures”. In
Proc. of SIGGRAPH/EUROGRAPHICS Conf. on Graph-
ics Hardware, pp. 85-94, Aug. 2004.

[23] S. Thoziyoor, N. Muralimanohar, J.H. Ahn, and N.P.
Jouppi. CACTI 5.1. Tech. report, HP Laboratories. 2008.

[24] J.E. Smith. “Decoupled access/Execute Computer Archi-
tectures”. In ACM Trans. Computer Systems, vol. 2, no. 4,
pp. 289-308, November 1984.

[25] R. M. Soneira. “Smartphone “Super” LCD-OLED Dis-
play Technology Shoot-Out”. http://www.display-
mate.com/Smartphone_ShootOut_1.htm.

[26] D. Tarjan, J. Meng and K. Skadron. “Increasing memory
miss tolerance for SIMD cores”. In Proc. of SC’09, pp.
22:1-22:11, Nov. 2009.

[27] D. Tarjan, K. Skadron. “The Sharing Tracker: Using
Ideas from Cache Coherence Hardware to Reduce Off-
Chip Memory Traffic with Non-Coherent Caches”. In
Proc. of SC’10, pp. 1-10, Nov. 2010.

[28] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan and
G. E. Suh. “SRAM-DRAM hybrid memory with applica-
tions to efficient register files in fine-grained multi-
threading”. In Proc. of ISCA, pp. 247-258, June 2011.

[29] D. H. Woo and Hsien-Hsin S. Lee. “COMPASS: a pro-
grammable data prefetcher using idle GPU shaders”. In
Proc. of ASPLOS, pp. 297-310, March 2010.

[30] “2G GPRS vs. 3G UMTS connection battery usage on
mobile phones”. http://blog.famzah.net/2010/05/24/
2g-gprs-vs-3g-umts-connection-battery-usage-on-

mobile-phones/.
[31] http://en.wikipedia.org/wiki/Neo_FreeRunner

[32] http://en.wikipedia.org/wiki/Samsung_eternity

[33] http://en.wikipedia.org/wiki/Samsung_Galaxy_S

[34] http://en.wikipedia.org/wiki/Samsung_Galaxy_S_II

