
A New Environment for

Web Caching and Replication Study

Víctor J. Sosa, Leandro Navarro
{v jsosa,leandro}@ac.upc.es

Universidad Politécnica de Cataluña (UPC)
Centro de Investigación en Computación (CIC)

Centro Nacional de Investigación y Desarrollo Tecnológico (Cenidet)

Abstract

Web Caching and replication have received
considerable attention in the past years due to
effectiveness in reducing client response time
and network traff ic. In this paper we describe
a tool to improving the Web caching and
replication study. An important difference
with other tools is this tool try to take
advantage of two tools very useful in caching
and computer networks study,
Proxycizer[Gadde98] and NS[NS]
respectively. Proxycizer2ns is an approach to
combine automatically these two tools, and in
that way to improving our large scale web
caching and replication study, taking the best
of both parts, in one hand the facili ty of
simulating an infrastructure which allow large
scale caching and replication analisys, and in
the other hand the verification of impact in the
network that this simulated infrastructure have
produced, rarely presented by other tool in
such a didactic and complete way.

Keywords: Caching, Replication, Internet,
Network, Simulation.

1. Introduction.

Nowadays Web is an important component in
the global information infrastructure because
of its explosive growth and use. In that
situation Web becomes the first traff ic
generator in the Internet. As a consequence
more frequently Web's users suffer long

delayes when try to get a document. This
necessity has emphasized the importance of
the study and the analysis of the behavior of
large scale caching and replication.

Some large scale Web caching and replication
strategies have been propose to reduce this
problem, trying to optimizes the bandwith use
in the internet [Chankhun95][Gadde98b],
nevertheless it is very diff icult to perceive the
impact that can have in a network environment
with certain characteristics until does start the
proposal in a real network environment, which
has the disadvantage of most of times we
cannot use our network equipment in march to
make those tests because the problems that
these can cause to users or the technical effort
that this entails. Therefore, most of the
proposals of architectures of large scale
caching and replication come accompanied by
simulation tests that indicate
the effectiveness of one or another one.
However in most of the cases these tests do
not contemplate the characteristics of the
network in which they are made, but that they
are limited to driven simulation environment
with the data that demonstrate their numerical
improvements, this is, how good is the global
cache hit ratio, how they decrease the number
of messages interchanged in the network (for
control cache protocol), how efficient is the
management of a global cache directory, etc.

In many tools which do simulation like
described above is diff icult to find a way to

see the behaviour of traff ic in some links, or
bandwidth consumption, and latency, in other
words, an overall state in the network. This is
not a scarce situation because to include
network state in a simulator has a very high
complexity.

Taking into account this situtation we have
decided to take advantage of the technical
effort done in two popular simulation tools
(Proxycizer and NS) and try to combine them
to produce a new simulation tool which allows
to define a large scale proxy-cache and
replication simulation environment and also
offers more information about network details
happened in the simulation.

As we described above we have created a new
tool based on the combination of two
simulation tools, they are Network Simulator
(NS)[NS] and Proxycizer [Gadde98], a suite of
C++ classes and applications that can be used
in simulating and/or driving web proxies. This
combination has been posible by the
development of an application that we call
Proxycizer2ns.

It is important to say that there is a related
work to simulate proxy-caches using
NS[Yu99], however that work is oriented to
Web cache consistency analysis in a cache
hierarchy and it does not take into account
things related to different control cache
protocols and global cache architectures. We
considered very diff icult to adapt it to different
scalable caching environments, beside to add
the facili ty to combine caching and replication
that it does not consider and it is an important
thing for us. Make all of these adaptations in
the library Proxycizer is not a big problem.
Our initial intention is to take advantage of the
technical effort that we have until now, trying
to take the best of the two tools NS and
Proxycizer with a minor effort. However we
are working in improving the Proxycizer2ns to
use all faciliti es that [Yu99] is offering.

In section 2 the Proxycizer will be described
briefly, the adaptations that were necessary to
make to consider the combination of
replication and caching, and also will be
explained the Simulador-Proxycizer
application that is a tool based on the
Proxycizer library, which create a large scale
caching and replication simulation
infrastructure. In section 3 we will describe
NS, in section 4 Proxycizer2ns will be
explained, its architecture and functions. In
section 5 we will comment an example, and in
section 6 we present future work and final
comments.

2. Proxycizer

2.1 Description.

Proxycizer is a suite of C++ classes and
applications that can be used in simulating
and/or driving web proxy-caches. The
Proxycizer library will compile with any
recent version of g++ and has been tested on
platforms running FreeBSD, Digital, Unix,
and Solaris. The Proxycizer library has
functions which allow read different log
formats like: Squid[Wessels98], Crispy Squid
[Gadde99], Harvest[Chankhun95], UC
Berkeley Home IP [Gribble97], DEC
[Kroeger99] and some propietary logs. This
suite of classes/appications allow make
simulations of large scale hierachy caches
(using ICP protocol), or a large scale collective
internet caches using different directory
structures (replicated directory, partitioned
directory, replicated partial directory) with a
littl e effort in implementation.

Proxycizer was developed in the University of
Duke by Syam Gade[Gadde98], which has
given support us for the accomplishment of
this work. Proxycizer has the inconvenience of
not offering support for the definition of
replication within a structure of distributed
caching, which is in our interest analyze,
because many people have found that to

combine caching and replication is a good
strategy to improving internet traffic bandwith.
As a consequence we have done to Proxycizer
library some changes to allow this
combination.

2.2 Why Proxycizer?

There are different packages which address
different aspects of Internet server simulation
and benchmarking. For instance, Wisconsin
Proxy Benchmark(WPB) [Almeida99] uses
syntetich workloads modeled to emulate
typical temporal locali ty patterns to test
proxies under load. WebCASE[Zhang99], its
objetives are to provide a framework for
caching algorithm constructions and caching
statistics collection, and to allow the users to
observe algorithm behaviors (hit ratios). The
Web Polygraph tool[Polygraph] is a web
proxy benchmarking tool which can be used to
study proxy performance under various stress
conditions. Hbench:Web[Manley99] is a tool
which preprocess Web server logs and
automatically generates and appropiate traff ic
model for driving a Web server. S-
Clients[Banga97] proposes a scalable
mechanism for a driving Web servers to
overload conditions. Squid Proxy Analysis
(SPA)[Duska97] provides trace-driven
simulations tailored to emulate the
replacement behavior of Squid caches.

However the packages described above do not
create trace-driven simulations which allow to
analyze the behavior of different architectures
of distributed proxy-caches and replication. It
is well known the importance of a good
infrastructure of distributed caching and
replication to decrease internet traff ic and
latencies, as a consequence in this work we
want to develop a simulation environment
which allow us to analyze different proposals
of distributed caching and replication
(hierarchy, mesh, using replicated directory,
partitioned directory, etc.) taking into account
the impact in the network (bandwidth
consumption, latencies, etc.).

Given these circumstances, the library of
classes that offered Proxycizer to us was the
one that more approached our expectations.

2.3 Proxycizer limitations.

As we have said the Proxycizer library do not
have functions or methods to include
replication in a possible simulation. Taking
into account the well C++ classes structure in
Proxycizer and the support of its developer (S.
Gadde) it was no very complicated to adapt the
Proxycizer library to include replication.
However the Proxycizer library li ke many
others simulators do not consider some
network aspects (links bandwidth
consumption, latencies, etc). These aspects
are very complicated to be added in
Proxycizer, that is why We have looked for
some tool which offers to us a reliable way to
incorporate the analysis of these network
aspects. An alternative for this was incorporate
the results produced by a Simulator developed
using the Proxycizer library to a simulator of
networks like NS. NS is a simulator widely
used for the analysis and study of protocols
and computer networks. As a consequence of
this idea We have developed Proxycizer2ns.
Proxycizer2ns is a tool which allows to
transport resulting data from a simulator done
using the Proxycizer library to the Network
Simulator (NS). Sections 3 and 4 describe
thorough more these tools.

2.4 Simulator-Proxycizer

Simulator-Proxycizer is an application that we
have developed and that allows us to simulate
different large scale caching and replication
infrastructures.

This application is based on the library of
classes of Proxycizer, thus we can create
proxy-cache and replicas hierarchies using the
ICP protocol (as the Squid does [Wessels97]),
or we can define a global cache (no

hierarchies) using directory structures, as
CrispySquid [Gadde98b] does. All of this
infrastructures can be done by a combination
of proxy-caches and replicas (we call proxy-
mirrors).

The classes strcture of the application
Simulator-Proxycizer is showed in the figure
1.

Figure 1. Simulator-Proxycizer Class Hierarchy.

Simulator-Proxycizer receives as input the
characteristics of the infrastructure of proxy-
cache and replicas which are desired to
simulate their behavior through indicating it
the wished protocol, that is to say, if we
indicated protocol ICP, would assume that a
hierarchic infrastructure is desired, if we
indicated RD, would construct a caching and
replication infrastructure with a replicated
directory structure, and so on we can indicate
the type of infrastructure that we wished.

The other part important to indicate in the
simulation is the network topology in which it
is desired to create this proxy-caching and
replication infrastructure. This is indicated
providing as input a file that contains a graph

with the specifications of the wished topology
(node links, type of connections, distances).
This file is in format SGB (Stanford Graph
Base)[Knuth99], which has been generated
through an application program which we have
 developed and It's based on the Donald E.
Knuth [Knuth99] programs library. We have
chosen this topology definition format because
it is a format widely used in academic and
scientific means.

Since Simulador-Proxycizer is based on the
Proxycizer library, also it can receive as input
a trace file which will drive the simulation.
The trace file log format is automatically
senses and than Simulator-Proxycizer selects
the correct filter for the following log formats:
Squid, Crispy Squid, UC Berkeley Home IP,
DEC and some Proxycizer logs.

Simulador-Proxycizer provides basically as
output 2 files. In one of them appears in
textual format the numeric data that is
obtained in the simulation in which it talks
about number of made requests, rate of hits,
number of control messages between caches
and replicas for each node (proxy-cache or
proxy-mirror) that participates in the
simulation. The other file contains the registry
of all the events that involve an interchange of
packages between nodes, that is to say, query
messages, document requests, answers to
requests, happened in each node that takes part
in the infrastructure of Proxy-caching and
replication that we decided to define.

The file that contains the events provoked
during the simulation done by Simulador-
Proxycizer is generated thanks to an aggregate
that we have done to the Proxycizer library.
Later the use of this file of events (traces) in
Proxycizer2ns will be explained.

Proxy

ProxyCache

ProxyMirror

ProxyCCP

CCPICP

CCPPSD

CCPRD

CCPRPDSD

CCPRPDSDSQ

Simulator-Proxycizer

Proxycizer
Library
Modified

3. Network Simulator (NS).

3.1 Description.

NS is a object oriented simulator written in
C++, with an Otcl interpreter as a frontend
which is used as a command and configuration
interface. The simulator has been used widely
for the analysis of new protocols of network,
routing, queues, traffic in general, multicast,
wireless networks, everything at different
levels, network, transport, and application. NS
has a suite of " agents " (C++ and Otcl class)
that allows us to define a network with
characteristics similar to almost any network
which we found at the present time. NS
belongs to project VINT [Vint] in which are
participating UC Berkeley, LBL, USC/ISI, and
Xerox park researchers.

3.2 Why NS?

At the present time several languages and
packages exist to simulate computer networks,
we can divide them in 3 types[Law94]: a
general-purpose simulation language, a
communications-oriented simulation
languages, and a communications-oriented
simulators. Examples of simulation languages
are Arena, BONeS, NetDESIGNER, GPSS/H,
MODSIM II, SES/workbench, SIMSCRIPT
II.5. As example of the seconds we have
OPNET. Some examples of communications-
oriented simulators can be: BONeS PlanNet,
COMNET II I and NETWORK. In general all
of these tools help to model network
environments to be analyzed, some of them
use scripts, others have graphical interfaces,
nevertheless they have the disadvantage of
being commercial, and their code is not free.

NS is a tool strongly used in the investigation,
it offers documentation of its code, and exists
availabili ty on the part of its developers to
support in projects with NS.

The main reasons to choose NS as our
simulator to analyze the happened events in
the network during the simulations done with
Simulador-Proxycizer is the availabili ty of
their code, documentation, and the wide use
that it is having within the scientific
community which give a touch of confidence,
as well as its transparent integration with Nam
(tool that next is explained). More details
about the NS can be found in the page of the
Vint[Vint project].

3.3 Network Animator (Nam)

One more reason to choose NS as our tool to
verify the network events produced by the
simulations done with Simulador-Proxycizer is
in fact to have Nam.

Nam is a Tcl/TK based animation tool for
viewing network simulation traces and real
world packet traces. It supports topology
layout, packet level animation, and various
data inspection tools. Nam began at LBL. It
has evolved substantially over the past few
years. The nam development effort is now an
ongoing collaboration with the VINT project,
the traces generated by NS simulator are
totally compatible with Nam.

With Nam more information about the events
that are happening in the simulation is
contributed, in such a way that with this one
we can obtain more information than it comes
from the Simulador-Proxycizer application.
We can say that Nam is a tool that also
contributes in a didactic sense in the education
of networks and simulation. In section 5 we
will see how Nam works in the context of this
project.

4. Proxycizer2ns

4.1 Description.

Proxycizer2ns is a tool developed in C that
perfectly compiles with most recent gnu C. Its

main objective is to transport the results of the
simulations done by Simulador-Proxycizer to
means that are understood by NS, with the
purpose of verifying the effects that these
simulations have in the network (bandwidth
consumption, latencies, etc.).

As we have said before, a form to obtain
results in NS is introducing a program in Otcl
that indicates the characteristics of the
simulation, topology, and generates the
simulation environment using objects
understood by NS, so this is what
Proxycizer2ns is in charge to include in a Otcl
program that constructs in an automatic way.

Proxycizer2ns receives as input three files.
First of them it contains the information of the
network topology in format SGB, same that
was used in the simulations with Simulador-
Proxycizer, and it will use to define the
network topology that will use NS in a format
that this one understands (Otcl objects). The
second file contains the traces or the actions
that were registered during the simulation by
Simulador-Proxycizer, and the last file, it
indicates the name to give to the program in
Otcl that will be generated automatically by
Proxycizer2ns, and that will serve later as
input to the NS, and so finally to see the
simulation network effects done by Simulador-
Proxycizer shown through Nam and some
graphs generated by Xgraph.

Figure 2 shows the flow that follows this
simulation process.

Once NS begins to run the simulation under
the specifications given by the Otcl program
generated by Proxycizer2ns, a proxy-cache
and proxy-mirror infrastructure is created
(nodes in the network), which will have clients
representing the elements that send document
requests, whose request sequence will be
driven by the traces that were originated by
Simulador-Proxycizer. Proxycizer2ns
generates a file by each proxy-cache and
proxy-mirror which will constitute the trace

file that will receive during the simulation with
NS, following the pattern simulated by
Simulador-Proxycizer.

Figura 2. Proceso de Simulación.

It is important to remember that the
simulations done by Simulador-Proxycizer
also are trace-driven, in this case through the
traces that were extracted of a real
environment, as for example traces of Squid,
Digital, Berkeley, etc.

Simulator-Proxycizer

Caching and Replication
Infrastructure Type

(Protocols: ICP, RD,..)

Network Topology
Specification
(SGB Graph)

Traces
(Squid, Digital,
UC Berkley, ..)

Otcl Program
Specification for
NS Simulation

Traces
(Registry of messages

happened during
the simulation)

Network Simulator (NS)

Proxycizer2ns

Events
Animation
- NAM -

Traffic
Rate Graph
- Xgraph -

Some Simulation results
 (Hit ratios,

Menssages: ICP, RD....,
network effect is
not considered) Otcl File

Name

Proxy-caches and Mirrors
Trace files

(pglog y reqlog)

The traces generated by Proxycizer2ns have a
special format that next is explained.

4.2 Traces.

Proxycizer2ns generates traces from the
simulations done by Simulator-Proxycizer
which will drive the simulation done finally by
NS. The format of these traces follows the
specification for the PagePool/ProxyTrace
class that are used in NS (to see NS manual [
NS]).

The PagePool/ProxyTrace class uses real
traces to drive simulations. Because there exist
many web traces with different formats, in NS
has been decided that the
PagePool/ProxyTrace class uses an
intermediate format so that it can be fed in the
simulations done with NS. The
PagePool/ProxyTrace type basically consist of
2 files: pglog and reqlog. Each line in pglog
has the following format:

<serverID> <URL_ID> <PageSize> <AccessCount>

Each line, except the last line, in reqlog has the
following format:

<time><clientID><serverID><URL_ID>

The last line in reqlog records the duration of
the entire trace and the total number of unique
URLs:

<Duration><Number_of_URL>

Proxycizer2ns creates these files based on
what happened in each proxycache and proxy-
mirror that took part in the simulation done by
Simulador-Proxycizer (information registered
in the events file by Simulador-Proxycizer). In
this way and using some data structures in
Proxycizer2ns we can drive the simulation in
NS in such a way that it faithfully reflects the
happened things in the simulation done by
Simulador-Proxycizer.

5. Example of Use.

The best form than we must to show the
operation of this simulation environment
using Proxycizer2ns is writing up an example.

We have defined a very simple topology
represented by a proxy-cache and proxy-
mirror hierarchy which we can see figure 3.

Figura 3. Una topología jerárquica simple.

The file containing the graph with the
topology we called it Graph2p2ch.gb. In order
to execute Simulador-Proxycizer we would
make the following:

Simulator-Proxycizer -prot icp -top Graph2p2ch.gb
-trace Squidtracefile

In this way we are indicating that the proxy-
caches and replication infrastructure is given
by the graph that contains Graph2p2ch.gb. The
SGB graphs structure contains attributes that
are multipurpose in which we can indicate if a
vertex is a cache or is a mirror, and in addition
the characteristics to its connections
(bandwidth and distance between nodes). This
graph have been created by an application that
we have developed and we name:
create_graph.

Proxy
0

Proxy
2

Proxy
1

Proxy
6

Proxy
5

Proxy
4

Proxy
3

Clients
(reqlog, pglog)

Clients
(reqlog,
pglog)

With the parameter - prot that appears in the
command line, also we are indicating to
Simulador-Proxycizer that the communication
control between the proxies will be using ICP
protocol. The last parameter is indicating to
Simulador-Proxycizer that uses a trace file
called Squidtracefile, which contains Squid-
cache traces which we have taken from
NLANR.

When finalizing the Simulador-Proxycizer
execution generates 2 output files, one which
show in a textual way some data that happened
in the simulation:

- Hit and Miss ratios by each Proxy.
- Number of operations that had to be done by
the communication control protocol between
proxies
- Percentage of bytes transferred and received
by each Proxy.

These data are easily obtained thanks to the
Proxycizer library has a ProxyStats class
which takes accountants which obtain this type
of information.

Nevertheless the interesting thing of this work
is to observe the impact that these operations
simulated by Simulador-Proxycizer has in the
network. For it we need to execute
Proxycizer2ns in the following way:

Proxycizer2ns Tracefile Graph2p2ch.gb nsfile.tcl

In this command we are indicating to
Proxycizer2ns to take the Graph2p2ch.gb file
to generate the Otcl code necessary to create a
network topology with the characteristics
included in Graph2p2ch.gb using objects
which can be understood by the NS.

Proxycizer2ns will generate the code

Figure 3. Events Animation in NAM

necessary to create Proxycache and
Proxymirror agents that use as generating
source the Pagepool traces that will be created
from the obtained information of the Tracefile
file, which was generated by Simulator-
Proxycizer.

At the end Proxycizer2ns records the Otcl
code which has generated in the nsfile.tcl file.
In this point we are ready to observe the events
that happened in the simulation done by the
combination Simulator-Proxycizer and NS.
These events will be shown in a graphical way
through Nam and using Xgraph.

The last step in the execution of this
simulation environment is the following:

ns nsfile.tcl

With this we indicated to NS to run a
simulation using the specifications recorded in
the nsfile.tcl file. Within the code generated in
the nsfile.tcl file also there are commands
which will execute the NAM and the Xgraph.

NAM will be in charge to show the events
animation, as well as to provide information of
what was happening in the links, and Xgraph
will draw the traffic rates in each node which
have been detected by NS.

Figure 4 shows a stage of the animation
offered by NAM, can be seen the packages
interchange between nodes in the hierarchy,
with the possibili ty of extracting more
information of this animation with only click
the mouse button over the link. In the inferior
part are some traffic graphs between links. In
general are some data that reflect what is
happening in the links in a period of time.

Figure 5 shows the Xgraph graph showing the
total of bytes sent/recieved in a period of time
determined for each involved Proxy. The
observation periods of times can be a
parameter in Proxycizer2ns.

It is important to mention that the type of
graph used in Xgraph is a parameter
predetermined in Proxycizer2ns, in such a way
that we are testing several graph types whose

Figure 5. Traff ic in Megabytes sent/received by each Proxy in a period of time.

representation is most advisable.

6. Final Comments and Future Work

In this article we have presented a simulation
environment which is based on the
combination of two powerful simulation tools.
They are Network Simulator (NS) and the
Proxycizer library. Although it is truth that
generating new classes in the NS we can
obtain similar results without the necessity to
use the Proxycizer library, also is certain that
the level of complexity to obtain this is higher.
Because the Proxycizer library was created
with the purpose of simulating diverse
architectures of Web caching, it was much
more easy to adapt the Proxycizer library to
the use of replication, and to see the effects of
the simulations in the network by means of
transporting its results in a simple way to the
NS.

At the present time several developments exist
that try to obtain the same aim that we
persecuted with our simulation environment,
nevertheless we considered that take like a
start point to use two powerful tools in
continuos developing is a very acceptable
option.

At the moment we are in the process of
improvements of Proxycizer2ns in order that it
generates Otcl code that uses more
functionaliti es than NS can offer to us. At the
same, we are evaluating the cost/benefits that
implies to continue doing improvements to the
Proxycizer library or definitively to approach
the complexity to generate new classes that
operate in a direct way with the NS.

References.

[Almeida99] http//:www.cs.wisc.edu/~cao/wpb1.0.html.

[Banga97] G. Banga and P. Druschel. "Measuring the
capacity of a Web server". In Proceedings of the

USENIX Symposium on InternetTechnologies and
Systems (USITS). Department of CS, Rice University,
Dec. 1997.

 [Chankhun95] Anawat Chankhunthod, at al.
" A Hierarchical Internet Object Cache", Technical
Report 95-611, Computer Science Department,
University of Southern California, Los Angeles March
1995. http://www.usc.edu/dept/cs/tech.html

[Duska97] B. Duska, D. Marwood, and M. J. Feeley,
"The measured access characteristics of World-Wide
Webclient proxy caches. In Proceedings of the USENIX
Symposium on InternetTechnologies and Systems
(USITS). Dec. 1997.

[Gadde98] http://www.cs.duke.edu/ari/cisi/Proxycizer/

[Gadde98b] S. Gadde, J. Chase, and M. Rabinovich. "A
Taste of Crispy Squid". Workshop on Internet Server
Performance. June 1998.
http://www.cs.duke.edu/ari/cisi/crisp/crisp-wisp/crisp-wisp.html

[Gadde99] S. Gadde, J. Chase, and M. Rabinovich.
Crispy Squid. Available at http://www.cs.duke.edu/ari/crisp

[Gribble97] Steven .D.Gribble. UC Berkeley
Home IP HTTP traces, July 1997. Available
at: http//www.acm.org/sigcomm/ITA/

[Knuth99] D. Knuth, "The Stanford Graph
Base"http://www-cs-faculty.stanford.edu/~knuth/sgb.html

[Kroeger99] ftp://ftp.digital.com/pub/DEC/
traces/proxy/webtraces.html

 [Law94] A. M. Law and M. G. McComas, "Simulation
software for communication networks: the state of the
art". IEEE Communication Magazine 1994 32:44-50.

[Manley99]http//:www.eecs.harvard.edu/~vino/web/hbe
nch-web/.

[NS] http://www-mash.CS.Berkeley.EDU/ns/
[Polygraph] http://polygraph.ircache.net/

 [Wessels97] D. Wessels and K. Claffy.
"Application of Internet Cache Protocol (ICP), version
2". Request for Comments RFC-2186.
 [Vint] Virtual InterNetwork Testbed Project
http://netweb.usc.edu/vint/

[Yu99]http://www.acm.org/sigs/sigcomm/sigcomm99/p
apers/session5-1.html

[Zhang99]http://www.ircache.net/Cache/Workshop99/P
apers/zhang-final.ps.gz.

