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Responsiveness (In The Cloud)

E. Schurman and J. Brutlag. The user and business impact of server delays, additional 

bytes, and http chunking in web search. In Velocity, 2009. 

• Introducing server-side search result delays of           

< 0.5 seconds impacts critical business metrics

– Time to click, satisfaction, daily searches per user

• The cost of added delay increases over time 

and persists afterwards

• Results were so negative that some A/B 

experiments were halted ahead of schedule
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Responsiveness (On The Client)

• “Save user data and app state information. 

…This step is necessary because your app 

might be quietly killed while in the 

background for any number of reasons.”

• “Using these calls causes your app to be killed 

immediately.”

• “When your app is suspended, if it is found to 

be using a shared resource, the app is killed.”

Apple iOS Developer Library, Chapter 3: App States and Multitasking, 2013 3



Underutilization

“The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”

Luiz André Barroso and Urs Hölzle, 2009.
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Consolidation Challenge
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A New Opportunity

• Sandy Bridge client device prototype HW

– Way-based LLC partitioning

– Energy counters

• Full size parallel benchmarks, full system stack

• Goal: Evaluate the energy-saving potential of 

consolidation with HW for cache partitioning
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Machine Resources

Partitionable Unpartitionable8

4 cores, 

8 HyperThreads

6MB, 12 way LLC MLC prefetchers

DCU prefetchers

Interconnect BW

DRAM BW

http://images.anandtech.com/reviews/cpu/intel/sandybridge/review/die.jpg



Way-Based Partitioning
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Methodology

• Multiple benchmark suites

– Spec2006, PARSEC, DaCapo, other parallel kernels

– Full/large/native input sets

• Unmodified Linux 2.6.36 

• Libpfm library built on perf_events

• Running Average Power Limit (RAPL) interfaces 

– 16us granularity

• ACme external power meter

– 1 sec granularity 

– http://acme.cs.berkeley.edu
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Hierarchical K-means Clustering
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Race to Halt

• Scattered points are the 8x12 possible allocations

• Energy α performance

• Applies across all benchmarks and allocations
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LLC and HT Utilization
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Multiprogram Contention
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Static Partitioning: Unpartitioned

• Baseline for measuring foreground 
app degradation is to just let apps 
share each way of the LLC

• Replacement policy evicts based on 
usage patterns

Static partitioning Average 

slowdown

Worst-case 

slowdown

Unpartitioned 5.9% 34.0%
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Static Partitioning: Fair Partitioning

• Fair partitioning gives each app half of 

the cache, regardless of need

• Most naïve use of partitioning

Static partitioning Average 

slowdown

Worst-case 

slowdown

Unpartitioned 5.9% 34.0%

Fair 6.0% 16.3%
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Static Partitioning: Ideal Partitioning

• Ideal partitioning uses the “best” allocation

– Heuristic is: smallest FG alloc whose perf was within 
1% of giving FG the whole machine, yet allows BG to 
run in remainder

• Oracular static partitioning

Static partitioning Average 

slowdown

Worst-case 

slowdown

Unpartitioned 5.9% 34.0%

Fair 6.0% 16.3%

Ideal 2.3% 7.4%
17



Static Partitioning: Takeaways

• Partitioning mitigates worst-case degradation

• For metrics like energy or weighted speedup, 

consolidation is effective but differences 

between sharing strategies are small on 

average

• High variance across application pairs

• Pairing strategy >> sharing strategy 

18



Applications Have Phases

• Can we dynamically determine the LLC 

requirements and further consolidate?
19

Progress (Billions of Retired Instructions)



Dynamic Algorithm

• Use performance counters to detect changes 

in required LLC alloc, via miss rate

• When a phase change is detected, explore 

allocations to determine new required size

• Give FG maximum alloc, then shrink alloc until 

miss rate is negatively impacted

• Hold allocation fixed until another change in 

miss rate is detected

20



Dynamic Algorithm
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Dynamic Algorithm Results

• In some cases we see significant throughput 

increases (up to 2.5x), resulting in a 19% 

throughput improvement on average

– FG performance never worsens more than 2%

• Using a shared LLC results in a 53% 

throughput improvement on average

– However, this scenario can often result in 

significant perf loss (up to 35%) for FG app

• Throughput correlated with energy/task
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Future Work

• Explain discrepancies between real machine 

utilities and others’ simulated results 

• More big data workloads

• App-pair-specific dynamic mechanism tuning

• Mechanisms for BW partitioning

• Mechanisms to preserve prefetcher efficacy
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Conclusions

• The race-to-halt paradigm still allows for 

consolidation opportunities

• LLC partitioning alone is not enough to prevent 

degradation, but mitigates worst case

• Consolidation is very effective for saving energy, 

but pairing strategy >> static sharing strategy

• Dynamic LLC partitioning can be effective at 

reducing energy per background task while 

preserving FG performance
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www.eecs.berkeley.edu/~hcook
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LLC sensitivity
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Thread scalability
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Utilization Diversity
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BW Hog

36



Prefetcher Sensitivity
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Wall vs socket
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