
A Hardware Evaluation of

Cache Partitioning to Improve

Utilization and Energy-Efficiency

while Preserving Responsiveness

Henry Cook, Miquel Moreto, Sarah Bird,

Kanh Dao, David Patterson, Krste Asanovic

University of California, Berkeley

Universitat Politecnica de Catalunya

Responsiveness (In The Cloud)

E. Schurman and J. Brutlag. The user and business impact of server delays, additional

bytes, and http chunking in web search. In Velocity, 2009.

• Introducing server-side search result delays of

< 0.5 seconds impacts critical business metrics

– Time to click, satisfaction, daily searches per user

• The cost of added delay increases over time

and persists afterwards

• Results were so negative that some A/B

experiments were halted ahead of schedule

2

Responsiveness (On The Client)

• “Save user data and app state information.

…This step is necessary because your app

might be quietly killed while in the

background for any number of reasons.”

• “Using these calls causes your app to be killed

immediately.”

• “When your app is suspended, if it is found to

be using a shared resource, the app is killed.”

Apple iOS Developer Library, Chapter 3: App States and Multitasking, 2013 3

Underutilization

“The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”

Luiz André Barroso and Urs Hölzle, 2009.

0.03

0.025

0.02

0.015

0.01

0.005

0

F
ra

ct
io

n
 o

f
T

im
e

1.0

0.5

0

P
e

a
k

 P
o

w
e

r C
o

n
su

m
p

tio
n

CPU Utilization

4

Consolidation Challenge

App

1

App

1

App

1

App

1

App

2

App

2

App

2

App

2

App

1

App

1

App

1

App

1

App

2

App

2

App

2

App

2

App

2

App

2

App

2

App

2

5

A Well-Studied Problem
1. Ravi Iyer. 2004. CQoS: a framework for enabling QoS in shared caches of CMP platforms. InProceedings of the 18th annual international conference on

Supercomputing (ICS '04). ACM, New York, NY, USA, 257-266.

2. F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou,E. Fernandez, A. Ramirez, and M. Valero. Predictable Performance in SMT Processors: Synergy
between the OS and SMTs. IEEE Trans. Computers, 55(7):785–799, 2006.

3. D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache contention on a chip multi-processor architecture. In HPCA, pages 340, 2005.

4. S. Cho and L. Jin. Managing distributed, shared l2 caches through os-level page allocation. In MICRO, pages 455–468, 2006.

5. A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing contention for shared resources on multicore processors. Commun. ACM, 53(2):49–57, 2010.

6. F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing quality of service in chip multi-processors. In MICRO, 2007.

7. R. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. R. Hsu, and S. K. Reinhardt. QoS policies and architecture for cache/memory in
CMP platforms. In SIGMETRICS, pages 25–36, 2007.

8. J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized frames for guaranteed quality-of-service in on-chip networks. In ISCA, pages 89, 2008.

9. J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into multicore cache partitioning: Bridging the gap between simulation and
real systems. In HPCA, Feb. 2008.

10. M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero. FlexDCP: a QoS framework for CMP architectures. SIGOPS Oper. Syst. Rev., 2009.

11. M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches. In
MICRO, pages 423–432, 2006.

12. D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient Fine-Grain Cache Partitioning. In ISCA), June 2011.

13. G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring Scheme for Memory-Aware Scheduling and Partitioning. In HPCA, 2002.

14. D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared l2 caches on multicore systems in software. In WIOSCA, 2007.

15. L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The impact of memory subsystem resource sharing on datacenter applications. In ISCA,
pages 283–294, 2011.

16. Y. Xie and G. H. Loh. Scalable shared-cache management by containing thrashing workloads. In HiPEAC, pages 262–276, 2010.

17. C.-J. Wu and M. Martonosi. Characterization and dynamic mitigation of intra-application cache interference. In ISPASS, pages 2–11, 2011.

18. E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing on modern CMP matter to the performance of contemporary multithreaded programs? In PPoPP,
pages 203–212, 2010.

19. Fei Guo, Hari Kannan, Li Zhao, Ramesh Illikkal, Ravi Iyer, Don Newell, Yan Solihin, and Christos Kozyrakis. 2007. From chaos to QoS: case studies in CMP
resource management. SIGARCH Comput. Archit. News 35, 1 (March 2007), 21-30.

20. Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. 2006. A Case for MLP-Aware Cache Replacement. SIGARCH Comput. Archit. News
34, 2 (May 2006), 167-178.

21. Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vineet Chadha, and Jaideep Moses. 2009. Rate-based QoS techniques for cache/memory in
CMP platforms. In Proceedings of the 23rd international conference on Supercomputing (ICS '09). ACM, New York, NY, USA, 479-488.

22. Jichuan Chang and Gurindar S. Sohi. 2007. Cooperative cache partitioning for chip multiprocessors. In Proceedings of the 21st annual international
conference on Supercomputing(ICS '07). ACM, New York, NY, USA, 242-252.

23. Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and Stephen W. Keckler. 2005. A NUCA substrate for flexible CMP cache sharing. In
Proceedings of the 19th annual international conference on Supercomputing (ICS '05). ACM, New York, NY, USA, 31-40.

24. Michael R. Marty and Mark D. Hill. 2007. Virtual hierarchies to support server consolidation. SIGARCH Comput. Archit. News 35, 2 (June 2007), 46-56.

25. Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. 2010. SLAW: a scalable locality-aware adaptive work-stealing scheduler for multi-core systems. In
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '10).

6

A New Opportunity

• Sandy Bridge client device prototype HW

– Way-based LLC partitioning

– Energy counters

• Full size parallel benchmarks, full system stack

• Goal: Evaluate the energy-saving potential of

consolidation with HW for cache partitioning

7

Machine Resources

Partitionable Unpartitionable8

4 cores,

8 HyperThreads

6MB, 12 way LLC MLC prefetchers

DCU prefetchers

Interconnect BW

DRAM BW

http://images.anandtech.com/reviews/cpu/intel/sandybridge/review/die.jpg

Way-Based Partitioning
W

a
y

 0

W
a

y
 N

HT1 HT2

9

Methodology

• Multiple benchmark suites

– Spec2006, PARSEC, DaCapo, other parallel kernels

– Full/large/native input sets

• Unmodified Linux 2.6.36

• Libpfm library built on perf_events

• Running Average Power Limit (RAPL) interfaces

– 16us granularity

• ACme external power meter

– 1 sec granularity

– http://acme.cs.berkeley.edu

10

Hierarchical K-means Clustering

HTs�

LLC �

BW �

PF �

HTs�

LLC �

BW �

PF �

HTs�

LLC �

BW �

PF �

HTs�

LLC �

BW �

PF �

HTs�

LLC �

BW �

PF �

HTs�

LLC �

BW �

PF �

11

Race to Halt

• Scattered points are the 8x12 possible allocations

• Energy α performance

• Applies across all benchmarks and allocations

Runtime

E
n

e
rg

y

429.mcf 459.GemsFDTD ferret fop dedup batik

12

LLC and HT Utilization

LL
C

 s
iz

e

HTs 13

E
n

e
rg

y

Multiprogram Contention

Foreground 14

B
a

ck
g

ro
u

n
dR

e
l.

 F
G

 E
xe

c
T

im
e

Static Partitioning: Unpartitioned

• Baseline for measuring foreground
app degradation is to just let apps
share each way of the LLC

• Replacement policy evicts based on
usage patterns

Static partitioning Average

slowdown

Worst-case

slowdown

Unpartitioned 5.9% 34.0%

15

Static Partitioning: Fair Partitioning

• Fair partitioning gives each app half of

the cache, regardless of need

• Most naïve use of partitioning

Static partitioning Average

slowdown

Worst-case

slowdown

Unpartitioned 5.9% 34.0%

Fair 6.0% 16.3%

16

Static Partitioning: Ideal Partitioning

• Ideal partitioning uses the “best” allocation

– Heuristic is: smallest FG alloc whose perf was within
1% of giving FG the whole machine, yet allows BG to
run in remainder

• Oracular static partitioning

Static partitioning Average

slowdown

Worst-case

slowdown

Unpartitioned 5.9% 34.0%

Fair 6.0% 16.3%

Ideal 2.3% 7.4%
17

Static Partitioning: Takeaways

• Partitioning mitigates worst-case degradation

• For metrics like energy or weighted speedup,

consolidation is effective but differences

between sharing strategies are small on

average

• High variance across application pairs

• Pairing strategy >> sharing strategy

18

Applications Have Phases

• Can we dynamically determine the LLC

requirements and further consolidate?
19

Progress (Billions of Retired Instructions)

Dynamic Algorithm

• Use performance counters to detect changes

in required LLC alloc, via miss rate

• When a phase change is detected, explore

allocations to determine new required size

• Give FG maximum alloc, then shrink alloc until

miss rate is negatively impacted

• Hold allocation fixed until another change in

miss rate is detected

20

Dynamic Algorithm

FG FG FG FG FG FG BG BG BG BG BG BG

F
G

 M
is

s
R

a
te

21

Dynamic Algorithm

FG BG

F
G

 M
is

s
R

a
te

22

Dynamic Algorithm

FG BG

F
G

 M
is

s
R

a
te

23

Dynamic Algorithm

FG BG

F
G

 M
is

s
R

a
te

24

Dynamic Algorithm

FG BG

F
G

 M
is

s
R

a
te

25

Dynamic Algorithm

FG BG

F
G

 M
is

s
R

a
te

26

Dynamic Algorithm

FG BG

F
G

 M
is

s
R

a
te

27

Dynamic algorithm

FG BG

F
G

 M
is

s
R

a
te

28

Dynamic Algorithm Results

• In some cases we see significant throughput

increases (up to 2.5x), resulting in a 19%

throughput improvement on average

– FG performance never worsens more than 2%

• Using a shared LLC results in a 53%

throughput improvement on average

– However, this scenario can often result in

significant perf loss (up to 35%) for FG app

• Throughput correlated with energy/task

29

Future Work

• Explain discrepancies between real machine

utilities and others’ simulated results

• More big data workloads

• App-pair-specific dynamic mechanism tuning

• Mechanisms for BW partitioning

• Mechanisms to preserve prefetcher efficacy

30

Conclusions

• The race-to-halt paradigm still allows for

consolidation opportunities

• LLC partitioning alone is not enough to prevent

degradation, but mitigates worst case

• Consolidation is very effective for saving energy,

but pairing strategy >> static sharing strategy

• Dynamic LLC partitioning can be effective at

reducing energy per background task while

preserving FG performance

31

www.eecs.berkeley.edu/~hcook

32

LLC sensitivity

33

Thread scalability

34

Utilization Diversity

35

BW Hog

36

Prefetcher Sensitivity

37

Wall vs socket

38

39

40

