
Running OpenMP applications efficiently on an everything-shared SDSM∗

J.J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya - Barcelona
{jcosta,toni,xavim,eduard,jesus}@ac.upc.es

Abstract

Traditional software distributed shared memory
(SDSM) systems modify the semantics of a real hard-
ware shared memory system by relaxing the coher-
ence semantic and by limiting the memory regions that
are actually shared. These semantic modifications are
done to improve performance of the applications us-
ing it. In this paper, we will show that a SDSM system
that behaves like a real shared memory system (with-
out the afore mentioned relaxations) can also be used
to execute OpenMP applications and achieve similar
speedups as the ones obtained by traditional SDSM
systems. This performance can be achieved by en-
couraging the cooperation between the SDSM and the
OpenMP runtime instead of relaxing the semantics
of the shared memory. In addition, techniques like
boundaries alignment and page presend are demon-
strated as very useful to overcome the limitations of
the current SDSM systems.

1. Introduction

Clusters, or networks of workstations, are becoming
one of the most widely used platforms to run parallel
applications. The reasons behind this trend are mainly
two: the cost of these systems is quite affordable and
the technology to build them has reached a maturity
point to make them stable and easy enough to be ex-
ploited.

In these architectures, when the shared-memory
programming model is used, applications are run on

∗This work has been supported by the Spanish Ministry of Ed-
ucation (CICYT) under the TIC2001-0995-C02-01 contract and
by the FET program of the EU under contract IST-2001-33071

top of a software distributed shared memory runtime
(SDSM), but unfortunately it is not a real shared mem-
ory one. In order to improve performance, all imple-
mentations change the semantics of the shared mem-
ory to something easier to implement [1, 15, 6, 12, 16].
The two main changes are the relaxation of the coher-
ence semantic and the limitation of the shared areas.
The idea of the first modification to the semantic is that
a change done in a node will not be visible on the other
nodes till something special occurs (synchronization,
new thread creations, ...). The other modification usu-
ally done to the “shared-memory” semantics is that not
the whole memory is shared and thus the specific ar-
eas to be shared have to be explicitly defined. These
two changes mean that in order to run a real shared-
memory application, it has to be modified both in the
memory really shared and in the way it is accessed.
In addition, if we want to achieve performance, many
tricks have to be done by the programmer, taking into
account the side effects of the relaxations and their im-
plementation and that are not portable from one im-
plementation to another. It is clear that this is not an
approach with future.

Our proposal is to first implement an everything-
shared distributed memory system (NanosDSM) and
then prove that it can be used to run OpenMP applica-
tions efficiently. To achieve this efficiency, the prob-
lems that appear in the SDSM performance will have
to be solved by a tight cooperation between the ap-
plication runtime and the SDSM system. To prove
our point, we will implement an OpenMP runtime
that cooperates with the SDSM system and achieves
speedups comparable with the ones achieved over a
relaxed-semantic SDSM, but without paying the price
of relaxation.

1

2. Running OpenMP on SDSM

In this section, we will first present the main diffi-
culties found when trying to run efficiently OpenMP
applications on a distributed memory system such as a
cluster. Then, we will present the solutions tradition-
ally proposed by OpenMP implementators and SDSM
builders.

2.1 Main problems and solutions

The main problem in a SDSM system is that mov-
ing or copying a page from one node to another is a
quite time consuming task. This overhead can be as-
sumed as long as pages are not moved from one node
to another very frequently. Due to the locality found in
most programs, only a few pages are needed by a node
at any given time.

One problem appears when a page is needed in ex-
clusivity by two different nodes at the same time. If the
two nodes modify different data located in the same
page, we have a ping-pong of the page from one node
to another when it is not really shared. Should the data
be placed in different pages, the “sharing” would be
avoided. This problem is known as false sharing.

A popular solution to this problem is to relax the
idea that any modification has to be seen immediately
by all nodes. This will allow several nodes to hold the
same page and modify it as long as they do not modify
the same data. Once the application reaches a syn-
chronization point, the modified data is forwarded to
the rest of the nodes. This solution solves the problem
but lies a tougher one to the application: programmers
have to change their way of thinking as they cannot
assume a modification is done till the next synchro-
nization point. In addition, this is not even always true
as threads in the same node will see this modification
while “threads” in a different node will not.

Even when there is no false sharing, we still have
the problem of copying or moving pages from one
node to another. A traditional solution proposed to
solve this problem is to overlap the data movement
with the execution of the application. Prefetching is
the mechanism used, but this mechanism does not co-
operate with the application and thus it is very difficult
to prefetch the pages on the right moment, just when it
will not cause any extra problems such as a ping pong

or unnecessary network/CPU consumption. Although
prefetching may work in some cases, there are many
where this prediction and finding the appropriate time
to do it are not feasible.

Finally, current SDSM systems do not share the
whole memory, but only the regions explicitly declared
as shared. This reduces the potential overhead as the
number of shared pages is minimized. The drawback
is that, like in the previous solution mentioned, it also
places the burden on the programmer that has to have,
a priori, a clear idea of the regions that are shared and
the ones that are not.

2.2 Related Work

As we have mentioned, several OpenMP run-
time systems have already been implemented on top
of SDSM systems. The most significant ones are
the OpenMP translator developed by Hu et al. [7],
OpenMP on the SCASH system [12, 5], and Pa-
rADE [9].

Hu et al. [7] develop an OpenMP translator to run
OpenMP applications on top of TreadMarks on a clus-
ter of IBM SP2 nodes. As TreadMarks stacks are pri-
vate, the translator deals with variables declared lo-
cally in procedures, allocating them in a shared heap
in order to allow them to be accessed from parallel re-
gions.

OpenMP has also been implemented on top of the
SCASH system [12, 5]. This approach uses the Omni
compiler [13] to transform OpenMP code to parallel
code with calls to a runtime library. The SCASH sys-
tem is based on a release consistency memory model
which allows multiple writers. The consistency is
maintained at explicit synchronization points, such as
barriers.

ParADE [9] is implemented on a lazy release con-
sistency (HLRC[16]) system with migratory home.
The communications subsystem relies on MPI. The
translator for ParADE is also based on the Omni Com-
piler. The synchronization directives are translated to
collective communications on MPI. The work-sharing
constructs are mapped by the compiler to explicit mes-
sage passing.

Although they may have some differences among
them, the main differences compared to our proposal
are: i) that they all use a relaxed semantic SDSM while

2

our proposal is to use a sequential-semantic memory
system and encourage the cooperation between the
shared memory and the OpenMP runtime; and ii) that
they generate specific code for the SDSM, which is
different from the code generated for SMP machines.
Our proposal does not require any modification to the
OpenMP compiler, as all the message management is
done at the level of the OpenMP runtime.

3. Our environment

3.1 NanosDSM: An everything-shared SDSM

Main philosophical ideas

As we have already mentioned, our environment
(NanosDSM) offers an everything-shared SDSM. We
understand as an everything-shared SDSM, the one
that complies with the following two conditions:

• The whole address space is shared. This is-
sue is very important because it reduces the stress
placed on the file system and the administration.
If the code and libraries are shared, we only need
to have them in the initial node (where we start
the application) and the rest of nodes will fault
the pages and get them. It is also important to
have shared stacks because they will be needed if
we want to have several levels of parallelism or
some kind of parallelism within functions when a
local variable becomes shared among all threads.

• The system offers a sequential semantic. This
semantic guarantees that any modification done
in any node is visible to any other node imme-
diately (as would happen in a hardware shared
memory system).

When these two conditions are full filled, a SDSM
behaves in the same way than a hardware shared mem-
ory and thus the applications that run on a real shared-
memory machine will run with no modification in our
system.

Managing sequential consistency

In order to offer a sequential semantic, we have im-
plemented a single-writer multiple-readers coherence
protocol in NanosDSM. Any node willing to modify a

page has to ask permission to the master of the page,
which will take care that only one node has write per-
mission for a given page. It will also invalidate the
copies of the page to be modified that are located in
the other nodes.

In order to avoid overloading any node with master
responsibilities, we can migrate masters to any node.
The current policy is that the first node to modify page
is the master of that page. If nobody modifies it (a read
only page), the node where the application was started
will behave as the master for that page.

Support to allow cooperation with higher levels

The most important support consists on offering up-
calls. This mechanism allows the application (the
OpenMP runtime in our case) to register a mem-
ory region, which means that NanosDSM will notify
the higher level whenever a page fault occurs within
this memory region. The mechanism to notify this
page faults consists of executing the function that was
passed as a parameter when registering the region. As
this function is part of the application, it allows the
higher level to know what is happening at the Nanos-
DSM level, which is normally transparent. Later in
this paper, we will present mechanisms that use these
up-calls to build the cooperation between the OpenMP
runtime and NanosDSM.

NanosDSM also needs to offer the possibility to
move pages from one node to another (presend) and
to invalidate pages when requested by the application
or runtime. A more detailed description of these mech-
anisms will also be presented later in this paper.

It is important to keep in mind that these mecha-
nisms are not thought to be used by regular program-
mers, but by runtime implementators, compiler devel-
opers, etc. These mechanisms should be transparent to
regular applications.

Communication

Another important component of NanosDSM is the
communications subsystem. It is mainly used to move
pages from one node to another. It also provides an in-
terface to the application (the OpenMP runtime in our
case) to implement specific message-based communi-
cations with the goal to avoid the much more costly
page faults. Later in the paper, we will describe how

3

the OpenMP runtime uses this communication subsys-
tem for thread creation and synchronization.

Usability

Although in this paper we focus on running OpenMP
applications on top of NanosDSM, we have also tested
other shared-memory programming models such as
Pthreads. We have been able to execute unmodified
pthread applications on top of our system. This porta-
bility is achieved because our system is a real shared-
memory system and not an SDSM with relaxed consis-
tency. In the later case, we would have needed to mod-
ify the pthread applications to fit the relaxed model.

3.2 Nanos OpenMP runtime

In our environment, OpenMP applications are par-
allelized using the NanosCompiler [3, 4]. This com-
piler understands OpenMP directives embedded in
traditional Fortran codes, such as the NAS bench-
marks 2.3 [8] and generates parallel code. In the paral-
lel code, the directives have triggered a series of trans-
formations: parallel regions and parallel loop bodies
have been encapsulated in functions for an easy cre-
ation of the parallelism. Extra code has been generated
to spawn parallelism and for each thread to decide the
amount of work to do from a parallel loop. Additional
calls have been added to implement barriers, critical
sections, etc. And variables have been privatized as
indicated in the directives.

Nthlib [11, 10] is our runtime library supporting this
kind of parallel code. NthLib has been ported to sev-
eral platforms, including Linux/Pentium, Linux/IA64,
IRIX/MIPS, AIX/POWER and SPARC/Solaris. We
are currently working with the Linux/Pentium version
in order to support a distributed memory environment.

Following our philosophy, the first try was to run
NthLib as a shared library in the NanosDSM envi-
ronment. After that was achieved (with terrible per-
formance), we started the adaptation of the services
in NthLib to take advantage of the message layer in
NanosDSM.

As a result, only three aspects of NthLib were fi-
nally changed: The way the parallelism is spawned,
the implementation of barriers and spin locks.

NthLib spawns parallelism using an abstraction
called work descriptor. A thread sets up a work de-

scriptor an it provides the other threads with it. A work
descriptor contains a pointer to the function to be exe-
cuted in parallel and its arguments. Usually, the work
descriptor is set up in a shared memory area. In the
NanosDSM implementation, the work descriptor is set
up in a local memory area and then it is send through
the message queues to reach the other threads. This
solution avoids any page fault while spawning paral-
lelism.

NthLib joins the parallelism using barriers. In
its simplest form, a barrier contains the number of
threads participating and the number of threads that
have reached it. The threads arriving spin-wait until
both number are the same. After that, they continue
the execution. In NanosDSM, the same functionality
is implemented through messages. All threads send a
message to the master thread, and a message is sent
back to the threads when the master detects that all the
threads have reached the barrier. This way, there are
no page faults when the application reaches a barrier.

The last tool modified are the spin locks. Spin locks
are used both internally by NthLib to protect shared
structures and by the parallel application when using
critical regions. They are also implemented on top of
the message system in NanosDSM.

In addition to that, all the shared data structures
in NthLib are the same that in shared-memory imple-
mentations, except that they have been padded to page
boundaries in order to avoid false sharing among them.

4. Our approach: Cooperation between run-
times

As we have already mentioned, our approach does
not consist on modifying the behavior of the appli-
cation nor the semantics of the SDSM software, but
to encourage the cooperation between the OpenMP
runtime and the SDSM software. In this section, we
present the three kinds of cooperations we have al-
ready implemented and tested. it is important to notice
that these are not the only possibilities, but the ones we
have found necessary for our goal.

4.1 Boundaries alignment

The problem: Parallelizing a loop is a widely used
technique. The idea is to divide the number of iteration

4

among the processors that will execute them in paral-
lel. On a SDSM system, if this distribution does not
take into account the page boundaries, we may have
several processors writing on the same page causing
false sharing and thus degrading the performance.

The solution: As most parallel loops are executed
more than once, our proposal consists of scheduling
the iteration in two steps. In the first execution of a par-
allel loop, the runtime starts with an static scheduling
of the iterations (where all iterations are evenly dis-
tributed among all processors) and then learns which
iterations access to which pages. Once this is known,
the runtime reschedules the iterations avoiding the
sharing of a page among two processors. This mecha-
nism has some overhead the first time the loop is exe-
cuted, but the benefits are then seen in all further exe-
cutions of the loop.

How is the solution implemented:To compute the
new schedule of iterations we follow these steps:

1. Register the memory regions where writes are
done (using the up-call mechanism). We only
care about write areas because they are the im-
portant ones for page alignment. Read pages can
be replicated in all nodes that need them.

2. When a page fault occurs, the SDSM sends an
up-call, and the OpenMP runtime checks if the
address is the first one in the page. In this case, it
marks that the current iteration corresponds to the
beginning of a page. Otherwise, it does nothing.

3. Once each node has its list of iterations that corre-
spond to the beginning of a page, they send them
to the master, who will do the redistribution tak-
ing into account the list of iterations and the time
spent by each thread. We have to note that these
times include the page faults and thus may not
correspond to the reality. For this reason we have
to do the task several times till it becomes stable
(repeat steps 1 to 3).

This algorithm generates a new schedule that is then
reused every time the loop is executed. It could also
be used by the parallel loops with the same character-
istics.

The modules in the Nanos OpenMP runtime that
take part into the alignment mechanism are presented
in Figure 1, connected by a solid line.

This mechanism does the best possible load balance
taking into account the page granularity and it adds
little overhead.

4.2 Presend

The problem: In order to overlap data movement
with computation, we need to know which pages will
be needed by which nodes and when they will be
needed. Prefetching, the traditional solution, can eas-
ily detect the pages, but not the exact time when the
data movement will be best done without interfering
with the application.

The solution: Our solution is to allow a cooper-
ation between the runtime and the SDSM, who will
actually do the presend. The idea is to detect the end
of a loop and send the pages that each node has to the
nodes that will need them in the next loop. As the
work is normally a little bit unbalanced (specially if
we align boundaries), we can start sending pages from
one node while others are still computing. The only
remaining question is to know if there is enough time
to send the pages between loops. We will show that in
all our experiments, there is enough time to do it.

How is the solution implemented:To compute the
list of pages that have to be copied when presending
pages, we follow these steps:

1. Learn the sequence of loops in the application to
be able to know which loop comes after the cur-
rent one.

2. Register the memory regions that are accessed by
the parallel loop (note that in this case regions that
are read are also important, not like in page align-
ment where write regions where the only ones to
check).

3. Each thread keeps a list of the page faults it has
generated for each loop (using the up-call mech-
anism) and sends it to the master.

4. The master makes a new list with the pages that
each node has that should be sent, once the loop is
over, to which nodes. For performance reasons, if
more than one node have a page that another one
will need, all nodes holding the page will have
this page in their list of pages to send. In the exe-
cution, only the first one to request the copy will

5

presend mechanism

alignment mechanism

information
iteration

page fault upcalls

feedback

memory map

NANOS OpenMP Runtime

loop scheduling

After each
loop

Schedulers

Page AccessPage Access

Calculate Presend Pages

Schedulers
at page

Pages

Presend
boundariesSystem

Tracking

Nanos DSM

Figure 1. Components that take part in the alignment and presend mechanism

actually do it. With this mechanism we guarantee
that pages are copied as soon as possible.

5. Once the thread has this list back, whenever it fin-
ishes a loop, it send the pages specified in the list
using the presend mechanism implemented in the
NanosDSM.

The modules that take part into the presend mecha-
nism are presented in Figure 1, connected by a dashed
line.

4.3 Preinvalidation

The problem: A very similar problem consists on
invalidating the copies of a page once a node wants
to modify them (remember our SDSM implements a
sequential semantic). This task is also time consuming
and it would be desirable to be able to overlap it with
the computation as we do with presends.

The solution: Our approach is very similar to the
one presented for presends. When we detect which
nodes will need a page, we also detect if it will need
it for writing. If this is the case and a node that holds
the page will not need the page, then we invalidate our
copy and inform the page master that we do not have
a copy anymore. Hopefully, when the node wants to
write the page, it will be the only one holding it as all
other nodes will have preinvalidated it and thus it will
be able to write it with no extra overhead.

How is the solution implemented: The mecha-
nism used is exactly the same as in the presend but

taking into account the page writes to invalidate the
pages a node has that will be written by other nodes in
the next loop.

5. Methodology

5.1 Benchmarks

In order to test our proposal we have executed three
standard OpenMP applications. Two of them are NAS
benchmarks [8] (EP and CG) and the third one is the
Ocean kernel from the Splash2 benchmark suite [14,
17].

The EP benchmark kernel

This kernel generates pairs of Gaussian random devi-
ates according to a specific scheme. This is a really
parallel benchmark, all the data in the loop is private
and it finally does a reduction.

Ocean

The Ocean application studies the large-scale ocean
movements based on eddy and boundary current. It
takes a simplified model of the ocean based on a dis-
crete set of points equally spaced and simplified again
as a set of 2D point planes. In this situation, it solves a
differential equation via a finite difference method us-
ing a Gauss-Seidel update, computing a weighted av-
erage for each point based on its 4 neighbors. And it
repeats this update until the difference for all points is

6

!Weighted average computing

diff = 0.0;
C$OMP PARALLEL DO PRIVATE (i,j, tmp)
C$OMP& REDUCTION (+:diff)

do j = 2, n+1
do i = 2, n+1

tmp = A(i,j)
A(i,j)=0.2*(A(i,j)+A(i,j-1)

+A(i-1,j)+A(i,j+1)+A(i+1,j))
diff = diff + abs(A(i,j) - tmp)

enddo
enddo

Figure 2. Main parallel loop found in Ocean

less than some tolerance level. The main parallel loop
of this benchmark can be seen in Figure 2.

The CG benchmark kernel

The CG benchmark kernel uses a conjugate gradient
method to compute an estimate to the largest eigen-
value of a symmetric sparse matrix with a random pat-
tern of nonzeros. The problem size of the benchmark
class depends on the number of rows (na) of the sparse
matrix and the number of non-zero elements per row
(nz). We use the classes A and B as distributed in the
NAS benchmarks suite for our experiments.

This kernel have the following four consecutive par-
allel loops: i) matrix-vector product, ii) dot-product,
iii) AXPY/Dot-product combination and iv) axpy.

5.2 Testbed

All the experiments presented in this paper have
been run in two different clusters: Kandake and Crossi.
Table 1 presents their characteristics. For availability
reasons, we have been able to execute them on as much
as 7 nodes.

Table 1. Platforms used in our tests

Kandake Crossi
Nodes 8 24
Available nodes 6 7
Processors per node 2 2

(Hyperthreaded)
Processor speed 266MHz 2.4GHz
RAM per node 128Mbytes 2Gbytes
Network Myrinet Myrinet

0 2 4 6

Number of nodes

0

1

2

3

4

5

6

S
pe

ed
up

EP Class B (Crossi)
EP Class A (Crossi)
EP Class A (Kandake)

Figure 3. Speedups obtained by EP

6. Performance results

6.1 EP

As we have mentioned while describing the bench-
mark, this is the best possible case for any kind of
SDSM. It shares no pages between the different nodes
and thus a SDSM does not penalize its executions ex-
cept for the first copy of the data.

As this benchmark does not modify shared data,
page alignment does not make sense and thus our
mechanism detects it and maintains the original static
schedule. Regarding the presend mechanism, there is
nothing we can presend, because the parallel loop is
executed only once and after its execution there is no
exchange of data among the nodes.

Figure 3 presents the speedups obtained by this
benchmark in both machines and using both sizes
(classes A and B). In Kandake we only run class A be-
cause class B was too big (this happens with all bench-
marks).

Observing the graph, we can observe that, as ex-
pected, the speedup obtained is quite good. A perfect
speedup it not achieved due to the reductions that need
to be done at the end of the loop and because the sched-
ule used (STATIC) is not fully balanced. Some nodes
have some more work to do than others.

Although we have not been able to do a direct com-
parison of our results with other SDSM system, we can
tell that similar results were obtained by Müller et al.
using a relaxed consistency SDSM [5].

7

0 2 4 6

Number of nodes

0

1

2

3

4

5

S
pe

ed
up

Ocean Class B (Crossi)
Ocean Class A (Crossi)
Ocean Class A (Kandake)

Figure 4. Speedups obtained by Ocean

6.2 Ocean

In this benchmark, we have a potential horrible sit-
uation for a SDSM, which is a true sharing among
nodes. Many different cells in the array are read by
a node and written by another. This implies that there
are no boundaries because no matter how we split the
computation, some elements on one side will be writ-
ten by the nodes assigned to the other side. Once again
our mechanism detects it and does not align. In a sim-
ilar way, the presend mechanism is not useful because
pages are either only accessed by a node, or are read
and written by several nodes. This last case cannot be
taken into account by the presend as we may invalidate
a page that may be written latter on in the same node.
Our granularity is the loop and we cannot use a smaller
granularity within the loop. In this case, the OpenMP
runtime also avoids to do any presend.

Figure 4 presents the speedup obtained by this
benchmark, and once again we can see that they are
very good ones. Although there is potential true shar-
ing among nodes, when a node needs a page, the other
nodes are not using it. This behavior is quite frequent
due to the order in the iterations. It is clear that if the
granularity becomes too small and the nodes conflict
in the true sharing area, then the performance will be
degraded significantly. Nevertheless, the results pre-
sented here show that in all tested cases, the speedup
obtained is good enough.

0 2 4 6

Number of nodes

0

1

2

3

4

5

6

7

S
pe

ed
up

NanosDSM
NanosDSM+Align
NanosDSM+Align+Presend

Figure 5. CG class B on Crossi

6.3 CG

The last benchmark presented in this paper is the
CG. This benchmark does not run efficiently on an
everything-shared SDSM if there is no cooperation be-
tween the layers. The most important reason is that
the elements of a vector are read by some nodes in a
loop and written by different nodes in another loop.
This situation is perfect for the presend and alignment
mechanisms.

In order to present a more detailed study of the be-
havior of this benchmark, we present three different
graphs. The first one (Figure 5) shows the behavior of
this benchmark class B on Crossi. Then, we present
the behavior of the same benchmark in a smaller class
(A) on the same machine (Figure 6). This will help
us to see the effects of the different proposals when
the granularity is smaller and thus will give us an idea
of how well this application will scale. Finally, we
re-execute CG class A on Kandake and compare its
speedup with the one obtained by TreadMarks (Figure
7). This experiment will show us how well our auto-
matic mechanism does compared to a version specif-
ically written for TreadMarks and using a relaxed-
consistency SDSM.

The first experiment (CG class B on Crossi), shows
that a good speedup can be achieved (Figure 5). It
also shows that as the number of nodes grows, the
alignment and presend mechanisms become more im-
portant. This makes sense because as we increase
the number of nodes, we also increase the number of
boundaries and the number of pages that have to be

8

0 2 4 6 8

Number of nodes

0.0

0.5

1.0

1.5

S
pe

ed
up

NanosDSM
NanosDSM+Align
NanosDSM+Align+Presend

Figure 6. CG class A on Crossi

copied/moved.

When executing the same benchmark but using a
smaller dataset on the same machine (Figure 6), we
clearly see that the alignment and the presend are nec-
essary if some speedup is to be achieved. We can also
see that this speedup stops when more than 3 nodes
are used. The reason behind this behavior is the pres-
ence of two variablesalpha andbeta, which are writ-
ten in sequential and read in parallel, producing a big
contention. This could be solved if the compiler de-
tects this situation and informs the other threads with
the written value avoiding any page fault (and we are
currently working on it). Even though the load balance
has improved the performance a lot, as we divide itera-
tions on a page basis, a given node has all the iterations
that modify a page or none. This limits the possibility
of load balancing and thus if very few pages are used, a
good schedule will be impossible. For instance, if the
dataset has as many pages as nodes plus one, we will
have all nodes with the iteration of one page and one
node with the iteration of 2 pages, which means that
it will have twice as many iterations (and thus work)
than any other node.

Finally, we repeated the execution of the benchmark
on Kandake (Figure 7). The objective was to compare
our speedup with the one observed when the “same”
application is run on TreadMarks. We could only test
the TreadMarks version on this machine because we
only have a license for this machine.

The first thing we can see is that it has a similar
behavior (speedup wise) than the execution on Crossi.
We also see that this speedup stops growing after 4

0 2 4 6

Number of nodes

0

1

2

S
pe

ed
up

NanosDSM
NanosDSM+Align
NanosDSM+Align+Presend
TreadMarks

Figure 7. CG class A on Kandake

nodes and the reason is also the same as in the previous
experiment.

When comparing our behavior with the one
achieved by TreadMarks, we can see that we do as
well as they do but using a relaxed-semantic SDSM.
In addition, we should remember that the CG executed
in TreadMarks is not the OpenMP version, but a ver-
sion specially coded for TreadMarks. Finally, we can
also observe that TreadMarks continues to increase its
performance when the number of nodes grows beyond
4. Observe also that, even when using TreadMarks and
relaxed consistency, the speedup is limited to 2.5 on 4
processors, confirming the point about the small size
of the class A of CG.

7. Conclusions

We have presented some applications that have
achieved very good speedups. The ones that did not
achieve it have been compared to the execution on top
of other SDSM systems such as TreadMarks observing
a very similar behavior.

Finally, we have also detected the main limitation in
our approach. As we have to distribute work on page
bases, when the data needed by each nodes reached
the size of just a few pages, then our alignment mech-
anism will not be able to build a good load balance and
thus the performance will be penalized. On the other
hand, we will be able to run our applications on a sys-
tem much more similar to what we have on a hardware
shared memory system.

Our future work is to evaluate this proposals using

9

more benchmark applications, both from the NAS Par-
allel Benchmarks [8] and the SPEComp 2001 [2]. The
experience taken from them will then be used to im-
prove the execution environment with new proposals
oriented to solve the performance problems that we
could find with them.

8 Acknowledgments

We thank Ernest Artiaga, Josep Maria Vilaplana and
Sebastia Cortes, for their help in developing part of the
software presented in this paper. We also thank Prof.
M. Müller for letting us use one of his clusters and for
his help.

References

[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
Marks: Shared Memory Computing on Networks of
Workstations. IEEE Computer, 29(2):18–28, Feb.
1996.

[2] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner,
W. B. Jones, and B. Parady. SPEComp: A New
Benchmark Suite for Measuring Parallel Computer
Performance. Lecture Notes in Computer Science,
2104, 2001.

[3] E. Ayguade, M. Gonzalez, J. Labarta, X. Martorell,
N. Navarro, and J. Oliver. NanosCompiler: A Re-
search Platform for OpenMP Extensions. InIn Pro-
ceedings of the 1st European Workshop on OpenMP,
Lund, Sweden, October 1999.

[4] M. Gonzalez, E. Ayguade, X. Martorell, J. Labarta,
N. Navarro, and J. Oliver. NanosCompiler: Sup-
porting Flexible Multilevel Parallelism Exploitation
in OpenMP. Concurrency: Practice & Experience,
(12):1205–1218, October 2000.

[5] M. Hess, G. Jost, M. Müller, and R. Rühle. Expe-
riences using OpenMP based on Compiler Directed
Software DSM on a PC Cluster. InWorkshop on
OpenMP Applications and Tools (WOMPAT’02), Au-
gust 2002.

[6] W. Hu, W. Shi, and Z. Tang. JIAJIA: An SVM
System Based on A New Cache Coherence Proto-
col. InProceedings of the High Performance Comput-
ing and Networking (HPCN’99), volume LNCS 1593,
pages 463–472, Amsterdam, Netherlands, Apr. 1999.
Springer.

[7] Y. C. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel.
OpenMP for Networks of SMPs.Journal of Par-
allel and Distributed Computing, 60(12):1512–1530,
2000.

[8] H. Jin, M. Frumkin, and J. Yan. The OpenMP Im-
plementation of the NAS Parallel Benchmarks and
its Performance. Technical Report Technical Report
NAS-99-011, NASA Ames Research Center, October
1999.

[9] Y. Kee, J. Kim, and S. Ha. ParADE: An OpenMP
Programming Environment for SMP Cluster Systems.
In Supercomputing 2003 (SC’03), November 2003.

[10] X. Martorell, E. Ayguade, N. Navarro, J. Corbalan,
M. Gonzalez, and J. Labarta. Thread Fork/Join
Techniques for Multi-level Parallelism Exploitation in
NUMA Multiprocessors. In13th International Con-
ference on Supercomputing (ICS’99), june 1999.

[11] X. Martorell, J. Labarta, N. Navarro, and E. Ayguade.
A Library Implementation of the Nano-Threads Pro-
gramming Model. InEuro-Par, Vol. II, pages 644–
649, August 1996.

[12] M. Sato, H. Harada, and Y. Ishikawa. OpenMP Com-
piler for a Software Distributed Shared Memory Sys-
tem SCASH. InWOMPAT2000, July 2000.

[13] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. De-
sign of OpenMP Compiler for an SMP Cluster. In
EWOMP ’99, pages 32–39, Sept. 1999.

[14] J. P. Singh, W.-D. Weber, and A. Gupta. Splash: Stan-
ford parallel applications for shared-memory.ACM
SIGARCH Computer Architecture News, 20(1):5–44,
1992.

[15] W. E. Speight and J. K. Bennett. Brazos: A Third
Generation DSM System. InProc. of the USENIX
Windows NT Workshop, 1997.

[16] L. Whately, R. Pinto, M. Rangarajan, L. Iftode,
R. Bianchini, and C. L. Amorim. Adaptive Tech-
niques for Home-Based Software DSMs. In13th
Symposium on Computer Architecture and High Per-
formance Computing, September 2001.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations. InProceed-
ings of the 22th International Symposium on Com-
puter Architecture, pages 24–36, Santa Margherita
Ligure, Italy, 1995.

10

