Ignasi Paredes-Oliva

Ph.D. in Computer Science

ignasiparedes.com

Short Bio   View Ignasi Paredes Oliva, PhD's profile on LinkedIn

I am currently the Lead Data Scientist at the Nestlé Global Security Operations Center, where we use big data analytics to improve the company's cyberdefense.

I've been working on data science & analytics for 10+ years, first in the academia focusing on network traffic anomaly detection and then moved to industry, where I focused on user behaviour analysis in e-commerce fraud detection, online banking, smart cities, mobile traffic and social media.

I got my PhD, MSc and BSc degrees in Computer Science from Polytechnic University of Catalonia BarcelonaTech (UPC).  You can contact me at iparedes AT ac.upc.edu.

Publications

  • Ignasi Paredes-Oliva, Pere Barlet-Ros and Xenofontas Dimitropoulos. FaRNet: Fast Recognition of High-Dimensional Patterns from Big Network Traffic Data. Computer Networks [Q2], vol. 57, no. 18, pp. 3897-3913, October 2013. [pdf] [bibtex] [doi] ©Elsevier
  • Ignasi Paredes-Oliva. Addressing Practical Challenges for Anomaly Detection in Backbone Networks. Ph.D. thesis, Universitat Politècnica de Catalunya BarcelonaTech, July 2013. [pdf] [tdx] [bibtex]  
  • Ignasi Paredes-Oliva, Pere Barlet-Ros and Xenofontas Dimitropoulos. FaRNet: Fast Recognition of High Multi-Dimensional Network Traffic Patterns. In Proceedings of ACM SIGMETRICS (poster), Pittsburgh, PA, USA, June 2013 and ACM SIGMETRICS Performance Evaluation Review (PER), vol. 41, no. 1, pp. 355-356, June 2013. [pdf] [bibtex] [doi]
  • Ignasi Paredes-Oliva, Pere Barlet-Ros and Josep Solé-Pareta. Scan Detection under Sampling: A New Perspective. IEEE Computer Magazine, Special Issue on Cybersecurity [Q1]vol. 46, no. 4, pp. 38-44, April 2013. [pdf] [bibtex] [doi] [slides] ©IEEE
  • Maurizio Molina, Ignasi Paredes-Oliva, Wayne Routly and Pere Barlet-Ros. Operational Experiences with Anomaly Detection in Backbone Networks. Computers & Security  [Q2], vol. 31, no. 3, pp. 273-285, May 2012. [pdf] [bibtex] [doi] ©Elsevier
  • Ignasi Paredes-Oliva, Ismael Castell-Uroz, Pere Barlet-Ros, Xenofontas Dimitropoulos and Josep Solé-Pareta. Practical Anomaly Detection based on Classifying Frequent Traffic Patterns. In Proceedings of IEEE Global Internet Symposium (GI), Orlando, FL, USA, March 2012. [pdf] [bibtex] [doi][slides] ©IEEE
  • Ignasi Paredes-Oliva, Xenofontas Dimitropoulos, Maurizio Molina, Pere Barlet-Ros and Daniela Brauckhoff. Automating Root Cause Analysis of Network Anomalies using Frequent Itemset Mining. In Proceedings of ACM SIGCOMM Conference (demo), New Delhi, India, August 2010 and ACM SIGCOMM Computer Communication Review (CCR)vol. 40, no. 4, pp. 467-468, October 2010[pdf] [bibtex] [doi]
  • Maurizio Molina, Wayne Routly, Ignasi Paredes-Oliva and Ashish Jain. Anomaly Detection in Backbone Networks: Building a Security Service Upon an Innovative Tool. In Proceedings of Terena Networking Conference (TNC), Vilnius, Lithuania, May 2010. [pdf] [bibtex] [slides] [video]
  • Ignasi Paredes-Oliva, Pere Barlet-Ros and Maurizio Molina. Automatic Validation and Evidence Collection of Security Related Network Anomalies. In Proceedings of Passive and Active Measurement Conference (PAM) (poster), Zurich, Switzerland, April 2010. [pdf] [bibtex]
  • Ignasi Paredes-Oliva, Pere Barlet-Ros and Josep Solé-Pareta. Analysis of the Impact of Traffic Sampling on Portscan Detection. Technical Report UPC-DAC-RR-CBA-2009-14, November 2009. [pdf] [bibtex]
  • Ignasi Paredes-Oliva, Pere Barlet-Ros and Josep Solé-Pareta. Portscan Detection with Sampled NetFlow. In Proceedings of International Workshop on Traffic Monitoring and Analysis (TMA), Aachen, Germany, May 2009 and Lecture Notes in Computer Science, vol. 5537, pp. 26-33, 2009.[pdf] [bibtex] [doi] [slides] ©Springer-Verlag
 

List of publications available at DBLP and Google Scholar as well. Also, please note that in most accepted papers, the copyright has been transferred to the respective publisher and, therefore, these papers cannot be duplicated for commercial purposes. See ACMIEEE and Elsevier copyright policies; other publishers have similar copyright regulations.