
978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

Eliminating Redundant Fragment Shader Executions on a Mobile GPU via
Hardware Memoization

Jose-Maria Arnau* Joan-Manuel Parcerisa* Polychronis Xekalakis†
*Universitat Politecnica de Catalunya

†Intel Corporation
{jarnau,jmanel}@ac.upc.edu, polychronis.xekalakis@intel.com

Abstract
Redundancy is at the heart of graphical applications. In fact,

generating an animation typically involves the succession of
extremely similar images. In terms of rendering these images,
this behavior translates into the creation of many fragment
programs with the exact same input data. We have measured
this fragment redundancy for a set of commercial Android
applications, and found that more than 40% of the fragments
used in a frame have been already computed in a prior frame.

In this paper we try to exploit this redundancy, using frag-
ment memoization. Unfortunately, this is not an easy task as
most of the redundancy exists across frames, rendering most
HW based schemes unfeasible. We thus first take a step back
and try to analyze the temporal locality of the redundant frag-
ments, their complexity, and the number of inputs typically
seen in fragment programs. The result of our analysis is a task
level memoization scheme, that easily outperforms the current
state-of-the-art in low power GPUs.

More specifically, our experimental results show that our
scheme is able to remove 59.7% of the redundant fragment
computations on average. This materializes to a significant
speedup of 17.6% on average, while also improving the overall
energy efficiency by 8.9% on average.

1. INTRODUCTION
Graphical applications for mobile devices tend to exhibit a
large degree of scene replication across frames. Figure 1
shows two consecutive frames of a popular Android game, Bad
Piggies. As it can be seen, the input from the user resulted in
the main character being shifted, however a significant fraction
of the frame remained untouched. Despite being admittedly a
well selected example, this behavior is actually quite prevalent
for mobile applications. Figure 2 depicts the percentage of
fragment computation that is common between consecutive
frames for 9 popular Android games. Overall more than 40%
of the fragments computed in a given frame were previously
computed in the frame before it.

Motivated by this observation, recent work attempts to ex-
ploit this inter-frame locality in order to save memory band-
width and improve the overall energy efficiency. ARM’s Trans-
action Elimination compares consecutive frame buffers and
performs partial updates of entire tiles [7]. Parallel Frame
Rendering (PFR) [8] tries to overlap the execution of consecu-
tive frames in an effort to improve the cache locality. Although

Figure 1: Two consecutive frames of the game Bad Piggies. A
huge portion of the screen remains unmodified.

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f R
ed

un
da

nt
 F

ra
gm

en
ts

 (%
)

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

Figure 2: Percentage of redundant Fragment Program execu-
tions for 9 Android games. On average, 42.72% of the execu-
tions are redundant.

both schemes are able to significantly improve the overall en-
ergy efficiency, they still need to perform all the fragment
computations (even if they are not going to store them to the
frame buffers) and some of the memory accesses.

In Figure 3 we depict the performance benefits that could
be attained over PFR if we could avoid all computation of
fragments that are exactly the same between two conscutive
frames. Removing redudant computation and memory ac-
cesses results in a 39.5% speedup on average over the current
state-of-the-art. Moreover, as shown in Figure 4, energy is
also improved by 27%.

In this paper, we remove a significant fraction of this re-
dudant work by adding a task-level memoization scheme on
top of PFR. We utilize the fact that in graphics programming,
it is relatively easy to track changes to global arrays, such
as buffers or textures, since the programmer cannot directly
access the graphics memory. We thus keep a HW structure
that computes a signature of all the inputs to a task and caches
the value of the corresponding fragments. Subsequent compu-
tations form the signature and check against the signatures of

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sp
ee

du
p

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

Oracle Memoization

Figure 3: Performance increase achieved with an Oracle mem-
oization system. On average, 39.5% speedup can be achieved
by removing all the redundant Fragment Program executions.
The baseline is a state-of-the-art mobile GPU.

the memoized fragments. Hits in the HW structure result in
the removal of all relevant fragment computation.

This paper focuses on energy efficient, highly performing
mobile GPUs. Its main contributions are the following:
1. We provide a detailed analysis on the fragment redundancy

that exists across frames, and show that not all fragments
are equally predictable due to a non-uniformity in their
complexity.

2. We present a task-level memoization scheme that when
architected on top of PFR, it manages to improve energy
efficiency by 8.9% on average and increases performance
by 17.6%.

3. We analyze the effect of using imperfect hash functions
on the overall image quality, and show that even small
signatures of just 32-bits are able to achieve high image
fidelity.
The remainder of this paper is organized as follows: The

next section provides background information on the base-
line GPU architecture. Section 3 provides an analysis of the
fragment redundancy as seen on commercial applications. Sec-
tion 4 presents the proposed task-level memoization scheme.
Section 5 describes our evaluation methodology and Section 6
outlines the performance and power results that were obtained.
Section 7 reviews related work and finally, Section 8 sums up
with our conclusions.

2. BACKGROUND
The basic architecture assumed along this paper tracks closely
the ARM Mali 400-MP [19] mobile GPU. This is a GPU with
programmable vertex and fragment shaders, which uses Tile-
Based Deferred Rendering (TBDR) [26]. It consists of 3 main
components: the Geometry Unit, the Tiling Engine and the
Raster Unit, as shown in Figure 5.

In the Geometry Unit, input vertices are read from memory.
Next they are transformed and shaded by a user defined Vertex
Program running in a Vertex Processor. Finally, they are
assembled into the corresponding triangles in the Primitive
Assembly stage, where non-visible triangles are culled and
partially visible triangles are clipped.

The Tiling Engine gives support to TBDR, a technique

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 E

ne
rg

y

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

Oracle Memoization

Figure 4: Potential energy savings of removing all the redun-
dant Fragment Program executions. On average, 27% energy
can be saved with respect to a state-of-the-art mobile GPU.

that avoids the overdraw problem [21] produced by the con-
ventional Immediate Mode Rendering (IMR). In IMR, each
transformed triangle is immediately sent down the graphics
pipeline for further pixel processing. Since the colors of pixels
where graphical objects overlap are drawn over the top of one
another, they are written multiple times into memory causing
an increased memory traffic and wasting energy. In contrast,
TBDR completely avoids this problem by dividing the screen
into small rectangular blocks of pixels or tiles (typically 16
x 16 pixels), and processing them one at a time. Since each
tile is small enough that all its pixels may be stored in local
on-chip memory, each pixel color is not transferred to main
memory until the whole tile is rendered, hence writing it only
once. In the Tiling Engine, the Polygon List Builder saves
the 2D triangles to the Scene Buffer [6] in memory. For each
tile that a triangle overlaps, a pointer to that triangle is stored.
After this has been done for all the geometry, each tile contains
a list of triangles that overlap that particular tile. Tiles are then
processed in sequence by the Tile Scheduler: all the triangles
overlapping a tile are fetched from memory and dispatched to
a Raster Unit for rendering. Obviously, TBDR trades pixel for
geometry memory traffic, but overall TBDR has proved to be
effective in avoiding off-chip memory accesses on a mobile
GPU [6]. Since overdraw results in a significant waste of
memory bandwidth, hence in energy, it is not surprising that
TBDR is becoming increasingly popular in the mobile GPU
segment: the ARM Mali [19], the Imagination PowerVR [22]
and the Qualcomm Adreno [1] are clear examples.

The Raster Unit computes the colors of the pixels within a
tile. Initially, the Rasterizer converts the triangles into frag-
ments, where a fragment is all the state that is necessary to
compute the color of a pixel (screen coordinates, texture co-
ordinates or even user defined application specific attributes).
Fragments that are occluded by those previously processed in
the same tile are discarded in the Early Depth Test stage and
the remaining ones are written to the Input Register File of the
Fragment Processor.

The Fragment Processor, shown in more detail in Figure 6,
runs a user defined Fragment Program that computes the frag-
ment color. It reads the fragment data generated by the Early
Depth Test unit from the Input Register File and writes the

Cluster 1

Cluster 0

Geometry Unit

GPU
command

GPU
command

Command
Processor
Command
Processor

Memory
Controller
Memory

Controller

Vertex
Fetcher
Vertex

Fetcher

L2
Cache

L2
Cache

Vertex
Cache
Vertex
Cache

 Vertex
Processor

Primitive
Assembly
Primitive
Assembly

Tile
Cache
Tile

Cache

Polygon
List

Builder

Polygon
List

Builder

Tile
Scheduler

Tile
Scheduler

Tiling Engine

Memory

Programmable Stage

Fixed-Function Stage

Raster Unit 1
Raster Unit 0

RasterizerRasterizerEarly
Depth Test

Early
Depth Test

Z-BufferZ-BufferFragment
Processor
Fragment
Processor

Color
Buffer
Color
Buffer

Texture
Cache

Texture
Cache

ALU
Load/
Store

BlendingBlending

Figure 5: The assumed baseline GPU architecture consists on
a state-of-the-art mobile GPU that employs TBDR and Parallel
Frame Rendering to process multiple frames at a time.

resulting output color to the Output Register File, which will
later be used in the Blending Stage. The Fragment Processor
also includes specialized texture sampling units for processing
texture fetching instructions, which access Texture data in
memory.

The GPU memory hierarchy includes several first level
caches employed for storing geometry (Vertex and Tile
Caches) and textures (Texture Cache), and are connected
through a shared bus to the L2 cache. The Color Buffer is the
region of main memory that stores the colors of the screen
pixels, whereas the Z-Buffer stores a depth value for each
pixel, which is used for resolving visibility. In TBDR, the
GPU employs local on-chip memories for storing the portion
of the Color Buffer and the Z-Buffer corresponding to a tile.
The local on-chip Color Buffer is directly transferred to system
memory when all the triangles for the tile have been rendered.
The local on-chip Z-Buffer does not need to be written to main
memory.

Two of the GPU components, the Vertex Processors and the
Fragment Processors, are fully-programmable simple in-order
vector processors whereas the rest are fixed-function stages.
A form of SMT is employed, where the processor interleaves
the execution of multiple SIMD threads to avoid stalls due to
long latency memory operations.

3. REDUNDANCY AND MEMOIZATION
Memoization is an optimization technique that avoids repeat-
ing the execution of redundant computations by reusing the
results of previous executions with the same input values,
which results in execution speedups and energy savings. The
first time a computation is executed, its result is dynamically
cached in a Look Up Table (LUT), along with its inputs. Sub-
sequent executions of the same code will probe the inputs in
the LUT and in case of hit, the cached result is written to
the output rather then recalculating it. Memoization has been
employed both at the function level in software [23] and at
the instruction (or set of instructions) level in hardware [25].
In both cases, the computed result along with its inputs are

Graphics
Memory

Texture 0Texture 0Texture 0

Input Reg. File

Fragment
Processor

Reg0 Reg1 … Reg15
Frag 0
Frag 1

...
Frag N

Output Reg. File
Color

Frag 0
Frag 1

...
Frag N

Fragments from Z-Test

Color to Blending Stage

Constant
Reg. File
Const 0
Const 1

...
Const M

Tex. Sampler 0

Tex. Sampler 1

Instruction
Cache

Texture 0

Texture 0Texture 0Texture 0Fragment
Program 0

Figure 6: Fragment Stage of the GPU pipeline. The figure
shows all the inputs required to process a fragment, including
the per-fragment attributes stored in the input registers, the
textures samplers, the fragment program and constant mem-
ory. The output produced by this stage is the color of the frag-
ment.

cached in a LUT, so that subsequent executions with the same
inputs can directly read the memoized result, instead of re-
peating all the computations. Although the general concept is
fairly straightforward, in order for memoization to be efficient
a set of requirements have to be met. In the next few sections
we try to analyze these restrictions.

3.1. Reuse Distance and PFR

A prime requirement for any memoization scheme is that the
data on which the scheme is applied exhibits a high degree of
re-use. Figure 2 shows that for the graphical applications that
we use as our focus in this paper, 42.72% of the fragments are
redudant. However, re-use alone is not enough for HW based
memoization solutions. Bound by power/area limitations, the
HW-based memoization schemes also require that the re-use
distance between redundant computation is relatively small.

Throughout the paper we will use the term re-use distance
to mean the number of unique fragments processed between
two consecutive occurences of the same fragment, a slightly
modified usage of the term from its typical use [16]. We will
also say that two fragments are the same if they have identical
input attributes and they have to perform the same fragment
shader. In case two fragments are the same, we will call the
latter redundant.

Figure 7 illustrates the distribution of the re-use distances
between redundant fragments for the set of Android games
we analyzed (see Section 5) for re-use distances up to 2k
fragments. Redundant fragments in a conventional GPU, such
as the one described earlier, tend to exhibit a very uniform
distribution. Unfortunately, this is very bad news for any
memoization scheme as only 10% of the redudant fragments
can be captured with some realistic HW constraints. This
is somewhat expected, as most of the redundancy tends to
be inter-frame and frames are relatively big. As such, any
fragment memoization scheme needs to somehow overlap the

0 250 500 750 1000 1250 1500 1750 2000
Reuse Distance

0

10

20

30

40

50

60

70

80

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y
(%

) Conventional Rendering
Parallel Frame Rendering

Figure 7: Cumulative frequency of distances between redun-
dant fragments for Conventional Rendering and PFR.

fragment computations from sub-sequent frames.
This observation motivates the adoption of Parallel Frame

Rendering (PFR) [8] as our starting point. PFR tries to render
two consecutive frames in parallel. As shown in Figure 5,
under PFR the baseline GPU needs to be split into two separate
clusters, each including half of the resources of the original
GPU. The GPU Command Processor dispatches commands
from even frames to cluster 0 and commands from odd frames
to cluster 1. Each GPU cluster behaves as an independent
GPU, rendering the frame by using TBDR as described in
the previous section. To further reduce the distance between
redundant computations of parallel rendered frames, the two
clusters are synchronized by processing tiles in lockstep. As
such they process the same screen tile in two consecutive
frames in parallel. Although PFR was originally proposed in
order to improve the locality of texture cache accesses, it is a
perfect match for our memoization scheme.

Looking again at the re-use distances for a PFR based GPU
in Figure 7, 50% of the redundant fragments have re-use dis-
tances smaller than 64 fragments, and 61.3% smaller than
2000. This is a significant improvement over re-use distances
of the baseline GPU. Figure 8 shows a histogram of frag-
ment re-use distances for PFR (read on the left vertical axis).
Distances are discretized in bins of 2048 fragments and, un-
like Figure 7, all redundant fragment are represented in this
graph. As pointed-out before, 61.3% of the re-uses take place
at distances smaller than 2048 (first bin), whereas the rest are
sparsely distributed across the whole distance spectrum (note
that the bipolar appearance of the histogram is just an artifact
of grouping all distances greater than 64K into a single “fat”
last bin).

3.2. Task-level complexity

In this work, we term complexity the amount of work in-
volved by a fragment, and we measure it as the GPU cycles it
takes to compute fragment operations. As pointed out in [24],
this concept is important because computation re-use is lu-
crative only when the cost of accessing the structures used
for memoization is smaller than the benefit of skipping the
actual computation. For this reason prior work on memoiza-
tion either tries to perform memoization for multiple instruc-
tions [11, 13, 4, 5, 15, 28] or for long latency operations [10].

2048 10000 20000 30000 40000 50000 60000 65536
Reuse Distance

0

10

20

30

40

50

60

Fr
eq

ue
nc

y
(%

)

% fragments in histogram bin
Average cycles for fragments in histogram bin

35

40

45

50

55

60

65

70

75

Av
er

ag
e

Cy
cl

es

Figure 8: Reuse distance histogram with PFR, including per-
centage of fragments and average complexity for each his-
togram bin. The last histogram bin includes all the distances
that are bigger than 65536. The complexity is measured as the
number of GPU cycles required to process the fragment.

Figure 8 shows the per-bin average fragment complexity
(read on the right vertical axis), so we can see it as a function of
the re-use distances. Unfortunately, fragments that are re-used
at bigger distances, i. e. the ones that exhibit worse temporal
locality, tend to be more complex (70.2 cycles on average).
However, fragments at smaller re-use distances, which are the
target of our scheme, are also relatively complex (50.9 cycles
on average). Figure 9 provides a more detailed view of the
fragment complexity distribution. 45.6% of the fragments that
could be re-used and exist in large re-use distances are more
complex than the total average execution time. In contrast,
only 29.2% of the fragments re-used at small distances are
more complex than the average. Nevertheless, 100% of the
redundant fragments reused at small distances spend more than
6 cycles, which is greater than the amount of time required to
perform the lookup to the memoization scheme. As we will
show in Section 6, this is still enough to provide substantial
performance and energy gains.

3.3. Referential transparency

Another problem typically faced by conventional memoization
when identifying redundancy between instructions is to guar-
antee that they are referentially transparent, i.e. that the same
set of input values is always going to produce the same output
result. The main difficulty here arises from the fact that these
instruction blocks must not depend on global memory data
that is subject to changes between executions, and they do not
produce side-effects. Since it is difficult to track these global
changes at runtime, task-level hardware-based memoization
usually requires compiler support to carefully select code re-
gions that do not depend on global data or have side-effects,
which further reduces the choice of candidate code regions.

Fortunately, our approach does not suffer from this addi-
tional complexity for two reasons. The first is that fragment
shaders compute a single output color, without side-effects.
The second, and perhaps more important, is that global data
accessed by the Fragment Program, such as textures or shader
instructions, are relatively easy to track by the driver as the
programmer does not have direct access to the graphics mem-

0 25 50 75 100 125 150 175 200
GPU cycles

0

10

20

30

40

50

60

70

80

90

100

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y
(%

)

Fragments reused at small distances
Fragments reused at big distances
Average Fragment Program cycles

Figure 9: Cumulative histogram of fragment complexity for
fragments reused at small and at big distances. Complexity
is measured as number of GPU cycles required to process the
fragment.

ory. In fact, API function calls, such as glTexImage2D or
glShaderSource, must be used in order to update textures and
shaders.

As such, for a fragment memoization scheme, referential
transparency can be guaranteed by simply monitoring the API
calls, and discarding the content of the memoization hardware.
Although this is a very crude solution, in practice it works
quite well as updates to global data are rather infrequent. They
also tend to be clustered at the beginning of new levels (for
games) when all the textures and shaders required to render
the level are loaded, and as such part of the opportunity cost is
amortized. We found that the average time between updates to
global memory in our set of Android games is 93.10 seconds,
which amounts to thousands of frames.

4. TASK LEVEL HARDWARE-BASED MEM-
OIZATION ON A MOBILE GPU

4.1. Memoization system

Conceptually the proposed memoization scheme is comprised
of three principal components: the detection of candidate
fragments, the lookup of prior fragment information and the
replacement of the fragment computation with the memoized
information. Figure 11 depicts a block level diagram of the
various components and how they operate.

Input fragments are first checked whether they satisfy the
input restrictions, in order to be considered as memoization
candidates. Fragment Programs with more than 4 input regis-
ters or more than 4 texture samplers, are assumed to be bad
candidates for memoization. The rationale is that since these
inputs will have to be hashed, having more inputs both com-
plicates the hashing logic and degrades the quality of the hash
function (dispersion may become worse). Fragments that do
not meet the memoization criteria proceed as they would in
a normal GPU. The ones that do, pass through a stage where
we form a signature out of their inputs. As illustrated in Fig-
ure 10, 98.9% of the fragments pass the memoization criteria
in our set of Android games, so that the overall coverage of
our technique is not hindered by the hashing restriction.

Not all input bits are selected for generating the signature,

0 1 2 3 4 5 6
Number of Inputs

0

10

20

30

40

50

60

70

80

90

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f F
ra

gm
en

ts

Input Registers
Texture Samplers

Figure 10: Two cumulative histograms for the number of input
registers and number of texture samplers. With just 4 of each
we cover 98.9% of the fragments, although in OpenGL ES the
programmer can use up to 16 input registers and 8 texture
samplers.

as illustrated in Figure 12. Input Registers are vector registers
that consist of four 32-bit single precision FP components.
Based on the fuzzy memoization paradigm [34], we take off
the 8 least significant bits of the mantissa for every component.
Hence, fragments that are extremely similar are also consid-
ered redundant, improving the efficiency of the memoization
system. Furthermore, we reduce the input bits that are con-
sidered, simplifying the computation of the signature. Note
that small precision losses in graphics and multimedia can be
tolerated as the end difference is hard to distinguish [12].

Figure 12 shows how the hash function generator is imple-
mented. The total number of input bits that we can have based
on the input restrictions and the fuzzy memoization feature is
568, including information from the Fragment Program (base
PC), the Texture Samplers and the Input Registers. Being
F the 568-bit description of a fragment and S the resulting
signature of N bits, we have experimentally found that the
bitwise xor operations that follow the next form provide high
dispersion even with small signature sizes and require simple
hardware:

Si = Fi⊕Fi+N⊕Fi+2×N⊕Fi+3×N⊕ ...

We hash the input fragment into N bits, being N smaller
than 568. For example, for N = 32 each of the final bits is
a product of an 18 bit xor. Assuming that we have only two
input xor gates, this means that we need a tree of 6 levels
of xor operations. As the number of signature bits grow, the
complexity of the hash function lessens, however more storage
will be required for signatures (functioning as tags) in the LUT.
Moreover, the LUT set index is typically built by bit selection
of the signature LSBs, so having a larger signature with a less
complex hash function makes each index bit to be generated
from a smaller number of fragment bits. As we will show in
Section 6, this puts more pressure to specific sets of the LUT,
as the dispersion is much worse. This results in requirements
of a bigger LUT, which is obviously not a good trade-off.

Since we perform a hash of many bits into few, we in-
nevitably lose some information. This results in what we call
a false hit, which ultimately results in a distortion of the frame

Fragment
Processor

Input fragments

Is
hashable?

xor-based
Hash Function

num inputs ≤ 4
num samplers ≤ 4
Fragment = 568 bits

Fragment
Processor

Too many
inputs,

execute
Fragment
Program

N bits signature

Valid LRU Tag Color

Probe LUT

Miss!
Reserve

entry in LUT
and execute

Fragment
Program

Output colors

Set 0

Set 1

Set 2

Set 3

Update LUT Hit! Read color
from LUT & skip

Fragment Program

Scheduler
Set bitsTag bits

Figure 11: Proposed hardware-based task level memoization
system.

with respect to the one that would have been computed by a
normal GPU. More bits in the hash result in a smaller proba-
bility for such collisions, but as we will see in Section 6, in
practice there is little difference for signatures bigger than 32
bits.

Once the hashing of the inputs is ready, we then perform a
lookup to the Look Up Table (LUT). The LUT acts as a cache,
in that it uses part of the signature as an index, and the rest as
the tag. The LUT is set-associative, and we employ pseudo
LRU [3] as its replacement policy. Each entry of the LUT
contains control information and data. Regarding the control
information, each entry has a Valid bit, an LRU bit for the
replacement policy and N−M bits to store the most significant
part of the signature that serves as the tag for the entry, being
M the number of bits employed to select the set. Regarding
the data, each entry stores the 32-bit color, in RGBA format,
that corresponds to the given fragment.

A hit in the LUT indicates that we have a memoized value
of the prior color of the fragment, and as such we can skip the
fragment computation. Fragments that hit in the LUT read out
the color and take the bypass to the next GPU stage. On the
contrary, a miss in the LUT indicates that the output of the
fragment is not available. Missing fragments are redirected
to the Fragment Processors where the Fragment Program is
applied to compute the color. An entry in the given set is
reserved for the fragment, replacing a previous entry by using
pseudo-LRU if there is no free entry available, and the frag-
ment carries the index of the corresponding line. We block
redundant fragments that arrive while the corresponding frag-
ment is still being computed, once the redundant color is ready

TEX3PC TEX2 TEX1 TEX0 IN REG3 IN REG2 IN REG1

32
bits

6 bits 32 bits

Texture
sampling

mode

Texture
Base

Address
24 MS
bits w

24 MS
bits z

24 MS
bits y

24 MS
Bits x

Input Register = (x, y, z, w)
Take 24 Most Significant bits

of each component

38 bits 96 bits

XOR

IN REG0

XORXORXOR …...
S0S1S2SN-1

......

Figure 12: Computation of the hash function. The input frag-
ment description contains information from the Fragment Pro-
gram (base PC), the Texture Samplers and the Input Registers.

we wake-up and bypass the fragments.
The Scheduler coordinates the dispatch of fragments to the

Fragment Processors. It receives fragments from two sources:
fragments that cannot be hashed and fragments that miss in
the LUT. It applies a Round Robin policy to dispatch the input
fragments to the processors. In the case that all the Fragment
Processors are busy, the Scheduler stalls the pipeline. Once
the color of a fragment has been computed, it is forwarded
to the next GPU stage. Furthermore, the missing fragments
update the LUT by using the new color and the index of the
line previously reserved.

As the frequency of mobile GPUs is small, it takes only
two cycles in order to perform the hash function and access
the LUT. As such, there is no significant pressure to this task.
Furthermore, the Fragment Processors are usually the main
bottleneck in the GPU pipeline [29] due to the complexity of
the Fragment Program, that typically includes several complex
operations such as texture fetches. Hence, there is significant
slack for computing the signature and accessing the LUT
while the fragment processors are still computing previous
fragments.

The proposed hardware changes are relatively small as a
percentage of the total GPU area. For the 32-bit signature,
4-way LUT configuration with 512 sets, we measured it to be
14.25KBytes in total. Based on estimations using McPAT, the
whole memoization scheme including the hash computation
logic and the LUT accounts for only 0.6% of the overall GPU
area.

The baseline GPU has two clusters to render two frames in
parallel in order to improve the temporal locality of redundant
fragments. The hardware LUT (which is the most costly
component in terms of area) is centralized and shared by both
clusters since most of the redundancy is inter-frame, so the
results computed by one cluster must be visible by the other
in order to detect and remove redundant computations.

As previously mentioned in Section 3.3, we propose the
use of task level memoization. The execution of a Fragment
Program has no side-effects and no mutable state is allowed.
Furthermore, it is easy to track changes to global data. Note
that some inputs of the fragments are pointers to global graph-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

20
40
60
80

100

%
 re

du
nd

an
cy

Screen coord independent
Screen coord dependent

Time (s)

St
at

ic
 s

ce
ne

Scrolling / Camera movement Static camera,
objects moving Static

scene

Figure 13: The graph shows the percentage of redundant fragments vs time for the game Angry Birds. For the “Screen coord
dependent” configuration the screen coordinates are always used to form the signature, whereas for the “Screen coord indepen-
dent” they are excluded from the signature provided that they are not accessed in the Fragment Program. The graph covers four
phases of the application, an image crop of a frame for each phase is included in the figure. For phases with static frames (first
and last phases) both configurations achieve levels of redundancy close to 100%. However, the “Screen coord independent” per-
forms better in the presence of camera movements (second phase) or moving objects (third phase), since redundant fragments
are not required to be located at the same screen pixel from frame to frame.

ics memory, such as the base PC of the Fragment Program
or the base address of the textures. Even if two fragments
have the same base addresses, the output is not going to be
the same if the global data has been updated between two
executions of the Fragment Program. Nevertheless, all the
updates to graphics memory pass through the GPU driver. We
thus extended the driver to detect those updates and send a
command to the GPU to clear the LUT, since the memoized
values can no longer be trusted. Clearing the LUT consists on
setting all the valid bits to 0. We found that this clear operation
is very infrequent since textures and Fragment Programs are
updated on a game level basis, so they remain unmodified
during hundreds or thousands of frames. Moreover, the LUT
is warmed-up very fast due to its small size and the small
reuse distances exhibited by redundant fragments. As our
memoization system is task-level the entire execution of the
Fragment Program is avoided for redundant fragments that
hit in the LUT. Hence, not only the fragment computations
performed in the functional units are avoided, but also the
memory accesses required to fetch instructions and textures
are removed.

Regarding the granularity of our memoization system, we
decided to stay at the fragment level instead of targeting primi-
tive or even object level memoization. We found the fragments
to be more amenable to our technique as for primitive memo-
ization more inputs have to be hashed, all the input attributes
of three vertices, and more outputs have to be memoized. Tri-
angles can potentially cover big regions of the screen, whereas
for fragments only one output color has to be stored in the
LUT.

Scalability of our technique to larger GPUs is a valid con-
cern, since a centralized LUT design does not scale to GPUs
with tenths or hundreds of cores. Nevertheless, we think there
exist viable solutions thanks to the available flexibility in dis-

tributing the workload and the highly parallel nature of graphi-
cal applications. Scalability can be achieved by distributing
among different cores the processing of multiple tiles of the
same frame. The LUT could then be distributed into multiple
tables, each shared by cores processing the same screen tile in
consecutive frames. Other approaches that follow distributed
memories ideas are also possible, we leave the implementation
of such a distributed memoization system as future work.

More redundant computations can be removed by process-
ing more frames in parallel. However, this comes at the cost
of worse responsiveness [8] if the hardware resources are not
increased and diminishing returns as similarity decreases with
frame distance.

4.2. Screen Coordinates-Independent Memoization

Screen coordinates are 2D coordinates that describe the loca-
tion of a fragment in the screen, i. e. which pixel overlaps the
fragment. The last GPU stage, the Blending stage, employs
these coordinates to blend the color of the fragment with the
color of the corresponding pixel. However, the screen coor-
dinates are not used in most of the Fragment Programs since
the color of the objects does not usually depend on the exact
screen pixels where they are located.

Using the screen coordinates to form the signature imposes
significant constraints to the memoization system, as only
fragments located at the same screen pixels can be identified
as redundant. Nevertheless, the screen coordinates can be
excluded from the signature to expose more redundancy as
long as the outcome of the computation does not depend on the
location of the fragment in the screen. In order to implement
this optimization our GPU driver generates information about
the usage of the input registers. We expose this information
to the GPU, so that the screen coordinates are only employed
to form the signature in case the compiler indicates they are

GPU
Timing
Simulator

GPU
Trace
Generation

OpenGL ES
Trace
Generation

Mobile Applications

Android 4.0

Android Emulator

Virtual GPU

OpenGL ES Trace Generator

Gallium3D softpipe driver

Cycle-accurate
GPU simulator

McPAT

 GPU
statistics

activity factors

energy
estimations

OpenGL ES commands

FramesImage Quality
Assessment

Quality
statistics

GPU assembly and memory addresses

Desktop GPU Driver

Figure 14: Mobile GPU Simulation Infrastructure.

accessed in the Fragment Program.
The benefits of excluding the screen coordinates from the

signature are illustrated in Figure 13. By using this optimiza-
tion the memoization system is able to capture more redun-
dancy if there are camera movements and objects moving on
the screen. All the numbers reported in section 6 include this
optimization, since we found it to be beneficial for all the
workloads.

5. EVALUATION METHODOLOGY
We employ the TEAPOT toolset [9], a mobile GPU simulation
infrastructure that runs unmodified Android applications. The
infrastructure is illustrated in Figure 14 and it consists of
three main components: the OpenGL ES trace generator, the
GPU trace generator and the cycle-accurate timing simulator.
Regarding the first component, the Android Emulator available
in the Android SDK is used to run the Android OS in a desktop
machine. Furthermore the mobile software, i. e. the Android
games, are executed on top. The GPU virtualization [33]
feature of the Android emulator is employed, so the OpenGL
ES commands issued by the mobile applications are redirected
to the GPU driver of the desktop machine, providing hardware
accelerated graphics for the Android OS running inside the
emulator. The OpenGL ES trace generator consists of a library
interposed between the emulator and the desktop GPU driver.
This library captures all the OpenGL ES commands issued by
the Android applications, saves the per-command information
in a trace file and redirects the commands to the appropriate
GPU driver.

The OpenGL ES traces are fed to an instrumented version
of the Gallium3D [32]. Gallium3D provides an infrastructure
for building GPU drivers and it includes a complete software
renderer, softpipe. This software renderer runs the OpenGL ES
commands on the CPU, providing GPU functional simulation
and generating the GPU instruction and memory traces. Note
that a software renderer is different from real hardware, so
special care is taken to only trace the instructions that would
be executed in the real GPU, i. e. the instructions in the vertex

Table 1: Hardware parameters employed for the experiments.

Technology 32 nm
Frequency 300 Mhz

Tile Size 16×16
Screen resolution 800x480 (WVGA)

Number of GPU clusters 2
Raster Units per cluster 2

Vertex Processors per cluster 2
L2 cache 128 KB, 8-way, 12 cycles

Texture caches 8 KB, 2-way, 1 cycle
Tile cache 32 KB, 4-way, 4 cycles

Vertex cache 4 KB, 2-way, 1 cycle
Main memory 1 GB, 16 bytes/cycle

Lookup Table num sets 8→ 2048 : 2∗
Lookup Table num ways 2, 4, 8

Hash size 24, 32, 64, 128, 256

and Fragment Programs, and the memory requests that would
be issued in the graphics hardware, i. e. memory accesses to
read/write geometry, textures and the framebuffers. All the
per-fragment data is also stored in the GPU trace, including
the input registers and the state of the texture samplers, so
redundant fragments can be identified.

Finally, the GPU instruction and memory trace is used to
drive the cycle-accurate timing simulator, that models the
mobile GPU architecture illustrated in Figure 5. Regarding
the power model, the McPAT [17] framework provides energy
estimations. The parameters employed during the simulations
are summarized in Table 1. We have implemented the hard-
ware memoization system described in Section 4 on top of the
timing simulator. The per-fragment data stored in the GPU
trace is employed to compute the fragment signatures, access
the LUT and avoid re-execution in case of a hit. Note that
conflicts in the LUT table can introduce artifacts in the re-
sulting frames. The Image Quality Assessment included in
TEAPOT provides an estimation of the impact of conflicts on
image quality, by comparing the original frames generated
by a conventional GPU with the images created by using our
memoization system. A well-established metric, the Mean
Structural SIMilarity Index (MSSIM) [30] is used to evaluate
image quality and we have manually confirmed the results.

The set of benchmarks employed to evaluate our technique
include 9 commercial Android games that are representative
of the mobile graphical applications since they employ most
of the features available in the OpenGL ES 1.1/2.0 API. We
have included 2D games (angrybirds and badpiggies), since
they are still quite common in the mobile segment. Further-
more, we have included simple 3D games (crazysnowboard,
ibowl and templerun), with small Fragment Programs and
simple 3D models. Finally, we have selected more complex
3D games (captainamerica, chaos, hotpursuit and sleepy-

jack) that exhibit a plethora of advanced 3D effects. Regarding
the length of the simulations, we have generated traces of 100
frames for each game. During trace generation we tried to

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

24 bits 32 bits 64 bits 128 bits 256 bits

Figure 15: Speedups achieved by hardware memoization for
different sizes of the signature. The baseline configuration is
PFR.

24 26 28 30 32
Signature Size (bits)

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (%

)

Performance increase Energy savings Conflicts in LUT Image quality loss

Figure 16: Impact of signature size on performance, energy
savings, conflicts in the LUT and image quality. The baseline
configuration is PFR.

avoid unrealistic situations that favour our technique by artifi-
cially increasing the degree of redundancy. For example, in
some games if the user does not provide any input the screen
does not move and then nothing changes from frame to frame,
reaching levels of redundancy close to 100%. On the contrary,
we tried to capture normal gameplay, by providing inputs that
guarantee forward progress and allow the user to complete
the targets of the stage. As we depicted in Figure 2, the aver-
age redundacy in our traces is 42.72%, and all the individual
games exhibit redundancy levels that are far from the 100%
that would provide artificially biased situations.

2D games with static backgrounds are the perfect fit for our
memoization technique, but scrolling 2D games and complex
3D games are also amenable to memoization and we have
included both types of games in our set of workloads. More
specifically, our 2D games angrybirds and badpiggies in-
clude phases with static background and phases with scrolling
as illustrated in Figure 13. On the other hand, 3D games also
exhibit significant degrees of redundancy that come from static
background objects, for example the sky, or from 2D content
such as GUI components (scores, life bar, dialogues...) or bill-
boards/impostors. Finally, 3D games also include periods with
intensive camera movements and periods where the camera is
not moving around. Despite the redundancy levels are higher
for the periods with static camera, the optimization described
in section 4.2 is still able to expose significant redundancy
when the camera is moving.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
iz

ed
 E

ne
rg

y

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

Energy for Hash Function Logic and Lookup Table
24 bits 32 bits 64 bits 128 bits 256 bits

Figure 17: Normalized energy for different sizes of the signa-
ture. The baseline configuration is PFR.

(a) 24 bits. (b) 28 bits. (c) 32 bits.

Figure 18: The figure shows a cropped image for a frame of the
game Angry Birds for different sizes of the signature: 24, 28
and 32 bits. It illustrates the impact of conflicts in the Lookup
Table on image quality.

6. EXPERIMENTAL RESULTS

In this section we will provide details on the performance and
energy efficiency of the proposed scheme. The baseline for all
our experiments is a PFR capable GPU similar to that shown
in Figure 5. This GPU is able to render two frames in parallel,
and as such it is already able to benefit from the improved
locality in the memory sub-system.

We first evaluate the effect of the signature size on perfor-
mance, energy and image quality. The Lookup Table employed
for this sensitivity analysis is 4-way associative and has 512
sets.

Figure 15 shows the speedups attained for different signa-
ture sizes. On average, 14.8% speedup is achieved with a
256-bit signature, whereas 17.6% and 21.5% speedups are
obtained by using 32-bit and 24-bit signatures respectively.
Reducing the signature increases performance. The smaller
the signature the bigger the probability of having a conflict in
the LUT (up to some reasonable limit) and, hence, the bigger
the hit rate in the LUT. We have a conflict when two differ-
ent fragments get the same signature and are thus incorrectly
identified as redundant, which in turn results in the conflicting
fragment getting a wrong color from the LUT. Figure 16 shows
the percentage of conflicts for different signature sizes. For
24-bit signatures we have conflicts for 8.77% of the fragments,
whereas for 32-bit signatures we only have one conflict every
10 frames on average. There is no conflict at all for 256-bit sig-
natures (not shown in the Figure). Hence, the 24-bit signature
incorrectly removes the execution of an additional 8.77% of
the fragments with respect to the 256-bit signature, achieving

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Sp
ee

du
p

8sets 16sets 32sets 64sets 128sets 256sets 512sets 1024sets 2048sets

or
ac

le2 2 2 2 2 2 2 2 24 4 4 4 4 4 4 4 48 8 8 8 8 8 8 8 8

Figure 19: Speedups achieved for LUTs with different number
of sets and ways. The baseline configuration is PFR.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
iz

ed
 E

ne
rg

y

8sets 16sets 32sets 64sets 128sets 256sets 512sets 1024sets 2048sets

or
ac

le2 2 2 2 2 2 2 2 24 4 4 4 4 4 4 4 48 8 8 8 8 8 8 8 8

Energy for Hash Computation and Lookup Table

Figure 20: Normalized energy for different configurations of
the Lookup Table, including both static and dynamic energy.
Baseline is PFR.

significant speedups. Note that the 32-bit signature has a very
small number of conflicts but it still gets speedups with respect
to 256-bit signatures. As we decrease the signature size we
also improve the dispersion of the accesses to the LUT, as
described in Section 4. The bits that are used to select the set
in the LUT are computed by using more bits from different
sources as the signature size is decreased. This spreads the
accesses even when consecutive fragments are just slightly
different. Not surprisingly, the 32-bit signature achieves a
hit rate of 25.2% on average in the LUT, whereas the 256-bit
signature only obtains 19.6% hit rate.

Reducing the signature size improves energy consumption
as illustrated in Figure 17. The energy savings come from
two sources. The obvious source is that the size of the LUT is
reduced, since the signature has to be stored in each LUT entry,
so both the leakage and dynamic energy required to access
the LUT are smaller. Secondly, we avoid more executions
of the Fragment Program due to the conflicting fragments
that are incorrectly identified as redundant, and also due to the
better dispersion of the accesses across the sets of the LUT. On
average, switching from 256-bit to 32-bit reduces the energy
consumed by the LUT by 80% and overall GPU energy by
7.2%.

Figure 16 shows the effect of the signature size on perfor-
mance, energy, number of conflicts and image quality. The
24-bit signature achieves the biggest performance increase
and energy savings, but at the cost of a significant percent-
age of conflicts, 8.77%, that introduce noticeable distortions
on image quality. More specifically, image quality drops by

0

5

10

15

20

25

30

35

40

45

Hi
t R

at
e

(%
)

8sets 16sets 32sets 64sets 128sets 256sets 512sets 1024sets 2048sets

or
ac

le2 2 2 2 2 2 2 2 24 4 4 4 4 4 4 4 48 8 8 8 8 8 8 8 8

Big reuse distance

Small reuse distance

Figure 21: Hit Rates for different configurations of the Lookup
Table. The baseline configuration is PFR.

21.8%, this is an important percentage that introduces visible
artifacts in the images as illustrate in Figure 18. For the rest of
the experiments we employ 32-bit signatures, since 32-bit still
provides significant speedups and energy savings with respect
to bigger signatures while achieving high image fidelity.

Figure 19 shows the speedup for 2-way, 4-way and 8-way
associative LUTs with a number of sets from 8 to 2048. As
expected, increasing the associativity improves performance
in all the configurations. For example, for 512 sets the version
with 2-ways obtains 16.4% speedup, whereas the version with
8-ways achieves 18.1% performance increase. For a given
number of ways, increasing the number of sets provides no-
ticeable improvements initially but the speedup saturates at
256-512 sets. Although the results are far from the Oracle
memoization system, all the configurations provide consistent
and provide substantial speedups over the baseline GPU.

Figure 20 shows the normalized energy for the same config-
urations of the LUT. Initially, increasing the size of the LUT
provides significant energy savings since it improves the hit
rate. However, the speedup and the hit rate saturate at 256-512
sets. Beyond this point, increasing the LUT size increases
overall energy consumption since it is not going to improve
the hit rate but it increases the energy required to access the
table. As an example, the configuration with 8 sets and 4-way
achieves 5.1% energy savings, whereas increasing the number
of sets to 512 provides 8.8% savings. However, switching to
2048 sets results in 8.7% savings, smaller benefits than 512
sets due to the bigger energy requirements of the LUT (73%
more energy for the LUT with 2048 sets).

Figure 21 depicts the hit rates in the LUT. Again, increasing
the size of the LUT produces significant improvements in the
hit rate for the first steps, but the benefits saturate beyond
256-512 sets. In the best case, we have 26% hit rate whereas
the Oracle achieves 42.7%. Hence, the hardware LUT is
able to remove 60.8% of the redundant fragments detected
by the Oracle, but if we look at the speedups the hardware
LUT only gets 46.6% of the speedup achieved by Oracle
memoization. This is due to the non-uniform complexity of
the fragments, as described in Section 3. The LUT can only
capture fragments reused at small distances, i.e. fragments
with temporal locality, and those fragments exhibit smaller
complexity (50.9 GPU cycles on average) than the ones reused

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sp
ee

du
p

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

LUT (512 sets, 4-way) LUT (256 sets, 8-way) Oracle

Figure 22: Speedups for the 9 Android games and on average.
We include two of the best configurations for the LUT and the
Oracle memoization. The baseline configuration is PFR.

at big distances (70.2 cycles on average). Hence, the Oracle
gets significant speedups out of the 39.2% extra fragments that
is able to capture.

Figure 21 also splits the Oracle hit rate (total 42.7%) be-
tween fragments reused at small and big distances. Since the
redundant fragments at small distances amount to 61.3% of
all redundant fragments, as mentioned in Section 3, the small
distance oracle hit rate is 26.1%. Hence, a small LUT can
only aim to capture this 26.1% of fragments with temporal
locality. The results shows that a LUT with 256 sets and 8-way
avoids 25.5% of the Fragment Program executions, whereas
a LUT with 512 sets and 4-way obtains a hit rate of 25.2%.
Hence, small LUTs are very effective in capturing redundant
fragments with temporal locality.

Finally, Figure 22 and Figure 23 depict the per-game
speedups and energy savings respectively, for a hardware mem-
oization system with 32-bit signatures and two configurations
for the LUT: 512 sets 4-way and 256 sets 8-way. As it is shown,
the system achieves consistent performance improvements and
energy savings across all the applications. When focusing on
the performance aspect, the biggest speedup is achieved in
captainamerica, 30% increase, whereas templerun exhibits
the smallest speedup, 8.8%. Regarding the energy, the sav-
ings are in the range from 3.93% (templerun) to 15.84%
(angrybirds). The energy consumed by the LUT represents
1.42% of the overall GPU energy for the LUT with 512 sets
and 4-way and 1.49% for the LUT with 256 sets and 8-way
associative, on average. In the worst case the LUT consumes
up to 2.19% of total GPU energy, and 0.91% for the best case.

7. RELATED WORK
Exploiting the high degree of redundancy in graphical appli-
cations has attracted the attention of the architectural com-
munity in recent years. ARM’s Transaction Elimination [7]
performs a per-tile comparison of consecutive frames to avoid
transferring redundant tiles to main memory. Parallel Frame
Rendering [8] processes multiple frames in parallel to overlap
the texture accesses of consecutive frames and improve the lo-
cality in the L2 cache. Our work is also focused on exploiting
redundacy in GPUs, but besides removing redundant memory
accesses our system also avoids redundant computations.

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 E

ne
rg

y

angrybirds
badpiggies

captainamerica
chaos

crazysnowboard
hotpursuit ibowl

sleepyjack
templerun

GEOMEAN

Energy for Hash Function Logic and Lookup Table
LUT (512 sets, 4-way) LUT (256 sets, 8-way) Oracle

Figure 23: Normalized energy for the 9 Android games and
on average, including both static and dynamic energy. We in-
clude two of the best configurations for the LUT and the Oracle
memoization. Baseline is PFR.

Liktor et al. [18] propose the use of a software managed
cache, implemented in GPU local memory, to memoize re-
dundant colors for stochastic rasterization [2]. Our system is
different since it is hardware managed and, hence, completely
transparent to the programmer. Furthermore, our scheme does
not require stochastic rasterization, being able to exploit inter-
frame redundacy on top of the conventional rasterization algo-
rithm implemented on current mobile GPUs.

Tseng et al. [27] propose the data-triggered thread program-
ming model to remove redundant computations in general
purspose environments. Our work is focused on graphical ap-
plications and our hardware memoization system is automati-
cally able to remove a significant percentage of the redundancy
without programmer intervention.

Memoization has been subject of research for several
decades. Hardware memoization applies to single instruc-
tions or blocks of instructions [25, 10, 11, 13, 4, 5, 15, 28],
whereas software-based solutions aim to memoize entire func-
tions [23, 14, 20, 31]. Our memoization system is function
level and hardware-based, since it is focused on GPUs and
graphical applications where it is easier to track changes to
global data and no mutable state or side-effects exist.

Alvarez et al. [34] propose the use of fuzzy memoization at
the instruction level for multimedia applications to improve
performance and power consumption at the cost of small pre-
cision losses in computation. In [5] they further extended
tolerant reuse to regions of instructions. Their technique re-
quires compiler support and ISA extensions to identify region
boundaries and to statically select regions with redundancy po-
tential. Our approach differs from theirs because we focus on
mobile GPUs instead of CPUs, we add PFR to improve reuse
distance, and we do not require ISA extensions or compiler
support because we consider all fragment shaders without ex-
ception, and do not require boundaries since the whole shader
is skipped or reexecuted.

8. CONCLUSION
In this paper we have shown that more than 40% of the frag-
ment program executions are redundant on average for a set of
Android games, suggesting that memoization can be useful to

reuse computations in order to save time and energy. However,
fragment memoization is no simple task. As we have shown
most of the redundancy that could be exploited exists across
frames.

We thus proposed to employ fragment memoization on top
of techniques that aim to reduce the inter-frame re-use dis-
tances of fragments, such as Parallel Frame Rendering (PFR).
When we employ PFR, 61.3% of the redundant fragments
are brought into re-use distances that make them amenable
to HW memoization. Our memoization scheme is able to
achieve significant benefits in both performance and power,
with minimal distortion of the frames that are captured. More
specifically, when compared with a state-of-art PFR-enabled
GPU, our scheme is able to remove enough computation to
achieve 17.6% speedup for a set of commercial Android games.
This improves the energy efficiency of the system by 8.9% on
average. All this, comes at a neglible cost in terms of image
distortion, which as shown in the paper is not perceivable.

Acknowledgments

This work has been supported by the Generalitat de Catalunya
under grant 2009SGR-1250, the Spanish Ministry of Econ-
omy and Competitiveness under grant TIN 2010-18368, and
Intel Corporation. Jose-Maria Arnau is supported by an FI-
Research grant.

References
[1] “Qualcomm Adreno 320,” http://www.anandtech.com/show/6112/

qualcomms-quadcore-snapdragon-s4-apq8064adreno-320-
performance-preview.

[2] T. Akenine-Möller, J. Munkberg, and J. Hasselgren, “Stochastic raster-
ization using time-continuous triangles,” in Proceedings of the 22Nd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware, ser. GH’07, 2007, pp. 7–16.

[3] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Performance evalu-
ation of cache replacement policies for the spec cpu2000 benchmark
suite,” in Proceedings of the 42Nd Annual Southeast Regional Confer-
ence, ser. ACM-SE 42, 2004, pp. 267–272.

[4] C. Álvarez, J. Corbal, E. Salamí, and M. Valero, “On the potential of
tolerant region reuse for multimedia applications,” in Proceedings of
the 15th International Conference on Supercomputing, ser. ICS ’01,
2001, pp. 218–228.

[5] C. Alvarez, J. Corbal, and M. Valero, “Dynamic tolerance region
computing for multimedia,” IEEE Trans. Comput., vol. 61, no. 5, pp.
650–665, May 2012.

[6] I. Antochi, B. H. H. Juurlink, S. Vassiliadis, and P. Liuha, “Memory
Bandwidth Requirements of Tile-Based Rendering,” in SAMOS, 2004,
pp. 323–332.

[7] ARM, “Transaction elimination.” Available: http://www.arm.com/
products/multimedia/mali-technologies/transaction-elimination.php

[8] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Parallel frame render-
ing: Trading responsiveness for energy on a mobile gpu,” in Proceed-
ings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’13, September 2013, pp.
83–92.

[9] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “TEAPOT: A Toolset
for Evaluating Performance, Power and Image Quality on Mobile
Graphics Systems,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing, ser. ICS
’13. New York, NY, USA: ACM, 2013, pp. 37–46.

[10] D. Citron, D. G. Feitelson, and L. Rudolph, “Accelerating multi-media
processing by implementing memoing in multiplication and division
units,” in ASPLOS, 1998, pp. 252–261.

[11] D. A. Connors, H. C. Hunter, B.-C. Cheng, and W.-m. W. Hwu, “Hard-
ware support for dynamic activation of compiler-directed computation
reuse,” in Proceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS IX, 2000, pp. 222–233.

[12] E. B. Goldstein, Sensation and Perception, 6th ed. Univ. of Pittsburgh,
2002.

[13] A. González, J. Tubella, and C. Molina, “Trace-level reuse,” in In
Proceedings of the the International Conference on Parallel Processing,
1999.

[14] M. Hall and J. Mayfield, “Improving the performance of ai software:
Payoffs and pitfalls in using automatic memoization,” in In Proceedings
of the Sixth International Symposium on Artificial Intelligence, 1993,
pp. 178–184.

[15] J. Huang and D. J. Lilja, “Exploiting basic block value locality with
block reuse,” in HPCA, 1999, pp. 106–114.

[16] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement
based on reuse-distance prediction.” in Proceedings of the 25th In-
ternational Conference on Computer Design, ser. ICCD, 2007, pp.
245–250.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO 42. New York, NY, USA: ACM, 2009, pp.
469–480.

[18] G. Liktor and C. Dachsbacher, “Decoupled deferred shading for hard-
ware rasterization,” in Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, ser. I3D’12, 2012, pp. 143–
150.

[19] “Mali-400 MP: A Scalable GPU for Mobile Devices,”
http://www.highperformancegraphics.org/previous/www_2010/
media/Hot3D/HPG2010_Hot3D_ARM.pdf.

[20] P. McNamee and M. Hall, “Developing a tool for memoizing functions
in c++,” SIGPLAN Not., vol. 33, no. 8, pp. 17–22, Aug. 1998.

[21] “Mali GPU Application Optimization Guide,” http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0555a/
CHDIAHCC.html.

[22] “PowerVR Technology Overview,” http://www.imgtec.com/factsheets/
SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf.

[23] H. Rito and J. a. Cachopo, “Memoization of methods using software
transactional memory to track internal state dependencies,” in Proceed-
ings of the 8th International Conference on the Principles and Practice
of Programming in Java, ser. PPPJ’10, 2010, pp. 89–98.

[24] S. S. Sastry, R. Bodik, and J. E. Smith, “Characterizing coarse-grained
reuse of computation,” in 3rd ACM Workshop on Feedback Directed
and Dynamic Optimization, 2000, pp. 16–18.

[25] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” in Proceedings
of the 24th Annual International Symposium on Computer Architecture,
ser. ISCA ’97, 1997, pp. 194–205.

[26] “Tiled Rendering,” http://en.wikipedia.org/wiki/Tiled_rendering.
[27] H.-W. Tseng and D. M. Tullsen, “Data-triggered threads: Eliminat-

ing redundant computation.” in Proceedings of the 17th International
Symposium on High Performance Computer Architecture, ser. HPCA,
2011, pp. 181–192.

[28] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Parallel and Distributed Computing and Networks, 2007, pp.
230–235.

[29] P.-H. Wang, Y.-M. Chen, C.-L. Yang, and Y.-J. Cheng, “A predictive
shutdown technique for gpu shader processors.” Computer Architecture
Letters, vol. 8, no. 1, pp. 9–12, 2009.

[30] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality
Assessment: from Error Visibility to Structural Similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[31] H. Xu, C. J. F. Pickett, and C. Verbrugge, “Dynamic purity analysis for
java programs,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
ser. PASTE ’07, 2007, pp. 75–82.

[32] “Gallium3D,” http://en.wikipedia.org/wiki/Gallium3D/.
[33] “GPU Virtualization in the Android Emulator,” http://developer.

android.com/tools/devices/emulator.html#acceleration.
[34] C. Álvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-

point multimedia applications,” IEEE Transactions on Computers,
vol. 54, no. 7, pp. 922–927, 2005.

