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Abstract 
 

Security in the access to web contents and the 
interaction with web sites is becoming one of the most 
important issues in Internet. Servers need to provide 
certain levels of security so that the user feels comfortable 
when running the applications that provide the services 
he/she requires. HTTP over SSL is the most used solution, 
providing mutual authentication between the two 
interacting parts. The SSL protocol does not introduce 
complexity in web applications but increases the 
computational demand on the server, reducing its 
capacity to serve large number of clients and increasing 
the time to serve them. 

In order to compensate the degradation in the quality 
of service, the server needs to be upgraded with 
additional resources, mainly processors and memory. In 
this paper we analyze the scalability of servers that run 
secure dynamic web applications. We analyze how the 
server behaves when it is stressed with different number 
of clients and how the quality of service is degraded. We 
perform a detailed analysis of the server behavior and 
analyze the impact of adding more processors to the 
system that runs the server. The analysis is done using a 
fine-grained analysis framework that considers all levels 
in the application server execution (i.e. application, 
server, JVM and OS kernel). The RUBiS auction site 
benchmark is used to stress a Tomcat application server 
running on a commodity 4-way multiprocessor Intel 
platform with Linux. 

 

1. Introduction 
 

Current web sites have to face two issues that affect 
directly to the site scalability. First, the web community is 
growing day after day, increasing exponentially the load 
that sites must support to satisfy all clients requests. 
Second, dynamic web content is becoming popular on 
current sites. At the same time, all information that is 
confidential or has market value must be carefully 
protected when transmitted over the open Internet. 

Security between network nodes over the Internet is 
traditionally provided using HTTPS [32]. With HTTPS, 
which is based on using HTTP over SSL (Secure Socket 
Layer [15]), you can perform mutual authentication of 
both the sender and receiver of messages and ensure 
message confidentiality. This process involves X.509 
certificates that are configured on both sides of the 
connection. This widespread diffusion of dynamic web 
content and SSL increases the performance demand on 
application servers that host the sites. Due to these two 
facts, the scalability of these application servers has 
become a crucial issue in order to support the maximum 
number of concurrent clients demanding secure dynamic 
web content. 

Characterizing application servers scalability is 
something more complex than measuring the application 
server performance with different number of clients and 
determining the load that saturates the server. A complete 
characterization must also supply the causes of this 
saturation, giving to the server administrator the chance 
and the information to improve the server scalability by 
avoiding its saturation. For this reason, this 
characterization requires of powerful analysis tools that 
allow an in-depth analysis of the application server 
behavior and its interaction with the other system 
elements (including distributed clients, a database server, 
etc.). These tools must support and consider all the levels 
involved in the execution of web applications (operating 
system, Java Virtual Machine, application server and 
application) if they want to provide significant 
performance information to the administrators because the 
origin of performance problems can reside in any of these 
levels or in their interaction. 

A complete scalability characterization must also 
consider another important issue: the scalability relative to 
the resources. The analysis for determining the causes of 
server saturation can reveal that some resource is being a 
bottleneck for server scalability. In this case, a good 
option could be the addition of more resources of this type 
and the evaluation of the effect of this addition on server 
behavior in order to determine the causes of server 



saturation. On the other side, although any resource has 
been detected as a bottleneck for server scalability, the 
analysis of server behavior when adding more resources 
can be performed to verify if server saturation problem 
remains unresolved. 

In this paper we present a characterization of secure 
dynamic web applications scalability divided in two parts. 
First, we measure the vertical scalability of the server if 
running with different number of processors, determining 
the impact of adding more processors on server saturation. 
Second, we perform a detailed analysis of the server 
behavior using a performance analysis framework, in 
order to determine the causes of the server saturation 
when running with different number of processors. This 
framework considers all levels involved in the application 
server execution, allowing a fine-grain analysis of 
dynamic web applications. 

The rest of the paper is organized as follows: Section 2 
introduces dynamic web applications. Section 3 
introduces the SSL protocol used to provide security 
capabilities when accessing web content. Section 4 
describes our proposal for analyzing the scalability of 
secure dynamic web applications. Section 5 describes the 
experimental environment used in our evaluation. Section 
6 presents our evaluation of secure dynamic web 
applications scalability. Section 7 presents the related 
work and finally, Section 8 presents the conclusions of 
this paper. 

 

2. Dynamic web applications 
 

Dynamic web applications are a case of multi-tier 
application and are mainly composed of a Client tier and a 
Server tier, which in its turn uses to consist of a front-end 
web server, an application server and a back-end 
database. The client tier is responsible of interacting with 
application users and to generate requests to be attended 
by the server. The server tier implements the logic of the 
application and is responsible of serving user-generated 
requests.  

When the client sends to the web server an HTTP 
request for dynamic content, the web server forwards the 
request to the application server (as understood in this 
paper, a web server only serves static content), which is 
the dynamic content server. The application server 
executes the corresponding code, which may need to 
access the database to generate the response. The 
application server formats and assembles the results into 
an HTML page, which is returned as an HTTP response to 
the client. 

The implementation of the application logic in the 
application server may take various forms, including PHP 
[31], Microsoft Active Server Pages [26], Java Servlets 
[34] and Enterprise Java Beans (EJB) [33]. This study 

focuses on Java Servlets, but the same methodology can 
be applied with the other mechanisms for generating 
dynamic web content, in order to characterize their 
scalability. 

A servlet is a Java class used to extend the capabilities 
of servers that host applications accessed via a request-
response programming model. Although servlets can 
respond to any type of request, they are commonly used to 
extend the applications hosted by web servers. For such 
applications, Java Servlet technology defines HTTP-
specific servlet classes.  

Servlets access the database explicitly, using the 
standard JDBC interface, which is supported by all major 
databases. Servlets can use all the features of Java. In 
particular, they can use Java built-in synchronization 
mechanisms to perform locking operations.  

 

3. SSL protocol 
 

The SSL protocol provides communications privacy 
over the Internet. The protocol allows client/server 
applications to communicate in a way that is designed to 
prevent eavesdropping, tampering, or message forgery. To 
obtain these objectives it uses a combination of public-key 
and private-key cryptography algorithm and digital 
certificates (X.509).  

The SSL protocol does not introduce a new degree of 
complexity in web applications structure because it works 
almost transparently on top of the socket layer. However, 
SSL increases the computation time necessary to serve a 
connection remarkably, due to the use of cryptography to 
achieve their objectives. This increment has a noticeable 
impact on server performance, which can be appreciated 
on Figure 1. This figure compares the throughput obtained 
by the Tomcat application server, configured as described 
in Section 5, using secure connections versus using 
normal connections. Notice that the maximum throughput 

Figure 1. Tomcat scalability when serving secure vs. 
non-secure connections 

 



obtained when using SSL connections is 72 replies/s and 
the server scales only until 200 clients. On the other side, 
when using normal connections the throughput is 
considerably higher (550 replies/s) and the server can 
scale until 1700 clients. Finally, notice also that when the 
server is saturated, if attending normal connections, the 
server can maintain the throughput if new clients arrive, 
but if attending SSL connections, the server cannot 
maintain the throughput and the performance is degraded. 
More information about the impact of using SSL on server 
performance can be found on [9]. 

The SSL protocol fundamentally has two phases of 
operation: SSL handshake and SSL record protocol. We 
will do an overview of the SSL handshake phase, which is 
the responsible of most of the computation time required 
when using SSL. The detailed description of the whole 
protocol can be found in RFC 2246 [14]. 

The SSL handshake allows the server to authenticate 
itself to the client using public-key techniques like RSA, 
and then allows the client and the server to cooperate in 
the creation of symmetric keys used for rapid encryption, 
decryption, and tamper detection during the session that 
follows. Optionally, the handshake also allows the client 
to authenticate itself to the server. 

Two different SSL handshake types can be 
distinguished: The full SSL handshake and the resumed 
SSL handshake. The full SSL handshake is negotiated 
when a client establishes a new SSL connection with the 
server, and requires the complete negotiation of the SSL 
handshake. This negotiation includes parts that spend a lot 
of computation time to be accomplished. We have 
measured the computational demand of a full SSL 
handshake in a 1.4 GHz Xeon machine to be around 175 
ms. 

The SSL resumed handshake is negotiated when a 
client establishes a new HTTP connection with the server 
but using an existing SSL connection. As the SSL session 
ID is reused, part of the SSL handshake negotiation can 
be avoided, reducing considerably the computation 
demand for performing a resumed SSL handshake. We 
have measured the computational demand of a resumed 
handshake in a 1.4 GHz Xeon machine to be around 2 ms. 
Notice the big difference between negotiate a full SSL 
handshake respect to negotiate a resumed SSL handshake 
(175 ms versus 2 ms). 

 

4. Servers scalability 
 

The scalability of an application server is defined as 
the ability to maintain a site availability, reliability, and 
performance as the amount of simultaneous web traffic, or 
load, hitting the application server increases [19]. 

Given this definition, the scalability of an application 
server can be represented measuring the performance of 

the application server while the load increases.  With this 
representation, the load that provokes the saturation of the 
server can be detected. We consider that the application 
server is saturated when it is unable to maintain the site 
availability, reliability, and performance (i.e. the server 
does not scale). As derived from the definition, when the 
server is saturated, the performance is degraded (lower 
throughput and higher response time) and the number of 
client requests refused is increased. 

At this point, two questions should appear to the reader 
(and of course, to the application server administrator). 
First, the load that provokes the saturation of the server 
has been detected, but why is this load causing the server 
performance to degrade? In other words, in which parts of 
the system (CPU, database, network, etc.) will a request 
be spending most of its execution time at the saturation 
points? In order to answer this question, we propose to 
analyze the application server behavior using a 
performance analysis framework, which considers all 
levels involved in the application server execution 
(operating system, JVM, application server and 
application), allowing a fine-grain analysis of dynamic 
web applications. 

Second, the application server scalability with given 
resources has been measured, but how would affect to the 
application server scalability the addition of more 
resources? This adds a new dimension to the application 
servers scalability: the measurement of the scalability 
relative to the resources. This scalability can be done in 
two different ways: vertical and horizontal.  

Vertical scalability (also called scaling up) is achieved 
by adding capacity (memory, processors, etc.) to an 
existing application server and requires few to no changes 
to the architecture of the system. Vertical scalability 
increases the performance (in theory) and the 
manageability of the system, but decreases the reliability 
and availability (single failure is more likely to lead to 
system failure). We will consider this kind of scalability 
relative to the resources in this paper. 

Horizontal scalability (also called scaling out) is 
achieved by adding new application servers to the system, 
increasing the complexity of the system. Horizontal 
scalability increases the reliability, the availability and the 
performance (depends on load balancing), but decreases 
the manageability (there are more elements in the system). 

The analysis of the application server behavior will 
provide us with hints to answer the question about how 
would affect to the application server scalability the 
addition of more resources. If we detect that some 
resource is being a bottleneck for the application server 
performance, this encourages the addition of new 
resources of this type (vertical scaling), the measurement 
of the scalability with this new configuration and the 
analysis of the application server behavior with the 



performance analysis framework to determine the 
improvement on the server scalability and the new causes 
of server saturation. 

On the other side, if we upgrade a resource that is not 
being a bottleneck for the application server performance, 
we can verify with the performance analysis framework 
that scalability is not improved and the causes of server 
performance degradation remain unresolved. This 
observation justifies why with vertically scaling 
performance is improved only in theory, depending if the 
added resource is a bottleneck for server performance or 
not. This observation also motivates the analysis of the 
application server behavior in order to detect the causes of 
saturation before adding new resources. 

 

5. Experimental environment 
 

5.1 Tomcat servlet container 
 

We use Tomcat v5.0.19 [22] as the application server. 
Tomcat is an open-source servlet container developed 
under the Apache license. Its primary goal is to serve as a 
reference implementation of the Sun Servlet and JSP 
specifications, and to be a quality production servlet 
container too. Tomcat can work as a standalone server 
(serving both static and dynamic web content) or as a 
helper for a web server (serving only dynamic web 
content). In this paper we use Tomcat as a standalone 
server. 

Tomcat follows a connection service schema where, at 
a given time, one thread (an HttpProcessor) is responsible 
of accepting a new incoming connection on the server 
listening port and assigning to it a socket structure. From 
this point, this HttpProcessor will be responsible of 
attending and serving the received requests through the 
persistent connection established with the client, while 
another HttpProcessor will continue accepting new 
connections. HttpProcessors are commonly chosen from a 
pool of threads in order to avoid thread creation 
overheads.  

Persistent connections are a feature of HTTP 1.1 that 
allows serving different requests using the same 
connection, saving a lot of work and time for the web 
server, client and the network, considering that 
establishing and tearing down HTTP connections is an 
expensive operation. 

The pattern of a persistent connection in Tomcat is 
shown in Figure 2. In this example, three different 
requests are served through the same connection. The rest 
of the time (connection (no request)) the server is 
maintaining opened the connection waiting for another 
client request. A connection timeout is programmed to 
close the connection if no more requests are received. 
Notice that within every request is distinguished the 
service (execution of the servlet implementing the 
demanded request) from the request (no service). This is 
the pre and post process that Tomcat requires to invoke 
the servlet that implements the demanded request. 

Figure 3 shows the pattern of a secure persistent 
connection in Tomcat. Notice that when using SSL the 
pattern of the HTTP persistent connection is maintained, 
but the underlying SSL connection supporting this 
persistent HTTP connection must be established 
previously, negotiating a SSL handshake, which can be 
full or resumed depending if a SSL Session ID is reused. 
For instance, if a client must establish a new HTTP 
connection because its current HTTP connection has been 
closed by the server due to connection persistence timeout 
expiration, as it reuses the underlying SSL connection, it 
negotiates a resumed SSL handshake. 

We have configured Tomcat setting the maximum 
number of HttpProcessors to 100 and the connection 
persistence timeout to 10 seconds. 

 

5.2 Auction site benchmark (RUBiS) 
 

The experimental environment also includes a 
deployment of the RUBiS (Rice University Bidding 
System) [1] benchmark servlets version 1.4 on Tomcat. 
RUBiS implements the core functionality of an auction 
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Figure 2. Tomcat persistent connection pattern 
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Figure 3. Tomcat secure persistent connection pattern 



site: selling, browsing and bidding. RUBiS defines 27 
interactions. Among the most important ones are browsing 
items by category or region, bidding, buying or selling 
items and leaving comments on other users. 5 of the 27 
interactions are implemented using static HTML pages. 
The remaining 22 interactions require data to be generated 
dynamically. RUBiS supplies implementations using some 
mechanisms for generating dynamic web content like 
PHP, Servlets and several kinds of EJB.  

The client workload for the experiments was generated 
using a workload generator and web performance 
measurement tool called Httperf [27]. This tool, which 
support both HTTP and HTTPS protocols, allows the 
creation of a continuous flow of HTTP/S requests issued 
from one or more client machines and processed by one 
server machine: the SUT (System Under Test). The 
configuration parameters of the benchmarking tool used 
for the experiments presented in this paper were set to 
create a realistic workload, with non-uniform reply sizes, 
and to sustain a continuous load on the server. One of the 
parameters of the tool represents the number of concurrent 
clients interacting with the server. Each emulated client 
opens a session with the server. The session remains alive 
for a period of time, called session time, at the end of 
which the connection is closed. Each session is a 
persistent HTTP/S connection with the server. Using this 
connection, the client repeatedly makes a request (the 
client can also pipeline some requests), parses the server 
response to the request, and follows a link embedded in 
the response. The workload distribution generated by 
Httperf was extracted from the RUBiS client emulator, 
which uses a Markov model to determine which 
subsequent link from the response to follow. Each 
emulated client waits for an amount of time, called the 
think time, before initiating the next interaction. This 
emulates the “thinking” period of a real client who takes a 
period of time before clicking on the next request. The 
think time is generated from a negative exponential 
distribution with a mean of 7 seconds. Httperf allows also 
configuring a client timeout. If this timeout is elapsed and 
no reply has been received from the server, the current 
persistent connection with the server is discarded, and a 
new emulated client is initiated. We have configured 
Httperf setting the client timeout value to 10 seconds. 
RUBiS defines two workload mixes: a browsing mix 
made up of only read-only interactions and a bidding mix 
that includes 15% read-write interactions. 

 

5.3 Performance analysis framework 
 

In order to determine the causes of the server 
saturation, we propose to analyze the application server 
behavior using a performance analysis framework. This 
framework, which consists of an instrumentation tool 

called Java Instrumentation Suite (JIS [10]) and a 
visualization and analysis tool called Paraver [30], 
considers all levels involved in the application server 
execution (operating system, JVM, application server and 
application), allowing a fine-grain analysis of dynamic 
web applications. For example, the framework can 
provide detailed information about thread status, system 
calls (I/O, sockets, memory & thread management, etc.), 
monitors, services, connections, etc. Further information 
about the implementation of the performance analysis 
framework and its use for the analysis of dynamic web 
applications can be found in [10] and [17]. 

 

5.4 Hardware & software platform 
 

Tomcat runs on a 4-way Intel XEON 1.4 GHz with 2 
GB RAM. We use MySQL v4.0.18 [29] as our database 
server with the MM.MySQL v3.0.8 JDBC driver. MySQL 
runs on a 2-way Intel XEON 2.4 GHz with 2 GB RAM. 
We have also a 2-way Intel XEON 2.4 GHz with 2 GB 
RAM machine running the workload generator (Httperf 
0.8). Each client emulation machine emulates the 
configured number of clients performing requests to the 
server during 10 minutes using the browsing mix (read-
only interactions). All the machines run the 2.6.2 Linux 
kernel. Server machine is connected with client machine 
through a 1 Gbps Ethernet interface. Database and server 
machine are direct connected through 100 Mbps fast 
Ethernet crossed-link. For our experiments we use the Sun 
JVM 1.4.2 for Linux, using the server JVM instead of the 
client JVM and setting the initial and the maximum Java 
heap size to 1024 MB, which we have proven to be 
enough to avoid memory being a bottleneck for 
performance. 

All the tests are performed with the common RSA-
3DES-SHA cipher suit. Handshake is performed with 
1024 bit RSA key. Record protocol uses triple DES to 
encrypt all application data. Finally, SHA digest algorithm 
provides the Message Authentication Code (MAC). 

 

6. Evaluation 
 

In this section we present the scalability 
characterization of Tomcat application server when 
running the RUBiS benchmark using SSL. The evaluation 
is divided in two parts. First, we evaluate the vertical 
scalability of the server when running with different 
number of processors, determining the impact of adding 
more processors on server saturation (can the server 
support more clients before saturating?) Second, we 
perform a detailed analysis of the server behavior using a 
performance analysis framework, in order to determine 
the causes of the server saturation when running with 
different number of processors. 



 

6.1 Tomcat vertical scalability 
 

Figure 4 shows the Tomcat scalability when running 
with different number of processors, representing the 
server throughput as a function of the number of clients. 
Notice that for a given number of processors, the server 
throughput increases linearly with respect to the input load 
(the server scales) until a determined number of clients hit 
the server. At this point, the throughput achieves its 
maximum value. Table 1 shows the number of clients that 
saturate the server and the maximum achieved throughput 
before saturating when running with one, two and four 
processors. Notice that running with more processors 
allows the server to handle more clients before saturating, 
so the maximum achieved throughput is higher.  

Notice also that the same throughput can be achieved, 
as shown in Figure 1, with a single processor when SSL is 
not used. This means that when using secure connections, 
the computing capacity provided when adding more 
processors is spent on supporting the SSL protocol. 

Table 1. Number of clients that saturate the server and 
maximum achieved throughput before saturating 

number of 
processors 

number of 
clients 

throughput 
(replies/s) 

1 250 90 

2 500 172 

4 950 279 

When the number of clients that saturate the server has 
been achieved, the server throughput degrades to 
approximately the 30% of the maximum achievable 
throughput, as shown in Table 2. This table shows the 
average throughput obtained when the server is saturated 
when running with one, two and four processors. Notice 
that, although the throughput obtained has been degraded 

in all cases when the server has reached a saturated state, 
running with more processors improves the throughput 
(duplicating the number of processors, the throughput 
almost duplicates too). 

Table 2. Average server throughput when saturated 
number of processors throughput (replies/s) 

1 25 

2 50 

4 90 

 
6.2 Tomcat scalability analysis 

 

In order to perform a detailed analysis of the server, we 
have selected four different loads: 200, 400, 800 and 1400 
clients, each one corresponding to one of the zones 
observed in Figure 4. These zones group the loads with 
similar behavior of the server. In order to conduct this 
analysis, we use the performance analysis framework 
described in Section 5.3. 

The analysis methodology consists of comparing the 
server behavior when it is saturated (400 clients when 
running with one processor, 800 clients when running 
with two processors and 1400 clients when running with 
four processors) with when it is not (200 clients when 
running with one processor, 400 clients when running 
with two processors and 800 clients when running with 
four processors). We calculate a series of metrics 
representing the server behavior, and determine which of 
them are affected when increasing the number of clients. 
From these metrics, an in-depth analysis is performed 
looking for the causes of their dependence of server load. 

Figure 5. Average time spent by the server processing a 
persistent client connection 

 

Figure 4. Tomcat scalability with different number of 
processors 
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In order to detect the causes of server saturation we 
calculate, using the performance analysis framework, the 
average time spent by the server processing a persistent 
client connection, distinguishing the time devoted to each 
phase of the connection (connection phases have been 
described in Section 5.1) when running with different 
number of processors. This information is displayed in 
Figure 5. As shown in this figure, running with more 
processors decreases the average time required to process 
a connection. Notice that when the server is saturated, the 
average time required to handle a connection increases 
considerably. Going into detail on the connection phases, 
the time spent in the SSL handshake phase of the 
connection increases from 28 ms to 1389 ms when 
running with one processor, from 4 ms to 2003 ms when 
running with two processors and from 4 ms to 857 ms 
when running with four processors, becoming the phase 
where the server spends the major part of the time when 
processing a connection. 

To determine the causes of the great increment of the 
time spent in the SSL handshake phase of the connection, 
we calculate the percentage of connections that perform a 
resumed SSL handshake (reusing the SSL Session ID) 
versus the percentage of connections that perform a full 
SSL handshake when running with different number of 
processors. This information is shown in Figure 6. Notice 
that when running with one processor and with 200 
clients, the 97% of SSL handshakes can reuse the SSL 
connection, but with 400 clients, only the 27% can reuse 
it. The rest must negotiate the full SSL handshake, 
saturating the server because it cannot supply the 
computational demand of these full SSL handshakes. 
Remember the big difference between the computational 
demand of a resumed SSL handshake (2 ms) and a full 
SSL handshake (175 ms). The same situation is produced 
when running with two processors (the percentage of full 
SSL handshakes has increased from 0.25% to 68%), and 
when running with four processors (from 0.2% to 63%). 

We have determined that when running with any 
number of processors the server saturates when most of 
the incoming client connections must negotiate a full SSL 
handshake instead of resuming an existing SSL 
connection, requiring a computing capacity that the 
available processors are unable to supply. Nevertheless, 
why does this occur from a given number of clients? In 
other words, why do incoming connections negotiate a full 
SSL handshake instead of a resumed SSL handshake when 
attending a given number of clients? Remember that we 
have configured the client with a timeout of 10 seconds. 
This means that if no reply is received in this time (the 
server is unable to supply it because it is heavy loaded), 
this client is discarded and a new one is initiated. 
Remember that the initiation of a new client requires the 

establishment of a new SSL connection, and therefore the 
negotiation of a full SSL handshake. 

Therefore, if the server is loaded and it cannot handle 
the incoming requests before the client timeouts expire, 
this provokes the arrival of a great amount of new client 
connections that need the negotiation of a full SSL 
handshake, provoking the server performance 
degradation. This asseveration is supported with the 
information of Figure 7. This figure shows the number of 
clients timeouts occurred when running with different 
number of processors. Notice that from a given number of 
clients, the number of clients timeouts increases 
considerably, because the server is unable to respond to 
the clients before their timeouts expires. The comparison 
of this figure with Figure 4 reveals that this given number 
of clients matches with the saturation load of the server. 

Figure 6. Incoming server connections classification 
depending on SSL handshake type performed 

 

Figure 7. Client timeouts with different number of 
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In order to evaluate the effect on server of the great 
amount of full SSL handshakes, we calculate, using the 
performance analysis framework, the state of 
HttpProcessors when they are in the SSL handshake phase 
of the connection, which is shown in Figure 8. The 
HttpProcessors can be running (Run state), blocked 
waiting for the finalization of an input/output operation 
(Blocked I/O state), blocked waiting for the 
synchronization with other HttpProcessors in a monitor 
(Blocked Synch) or waiting for a free processor to 
become available to execute (Ready state). When the 
server is not saturated, HttpProcessors spent most of their 
time in Run state. But when the server is running with one 
processor and saturates (400 clients) HttpProcessors spent 
the 47% of their time in Ready state. This fact confirms 
that the server cannot handle all the incoming full SSL 
handshakes with only one processor. 

It is expected that when the server is saturated and 
running with two or four processors, the HttpProcessors 
spent most part of their time of Ready state (waiting for a 
free processor to execute), in the same way as when 
running with one processor. But looking at Figure 8, we 
discover that when the server is running with two 
processors and saturates, although the time spent on 
Ready state has increased, the HttpProcessors spent the 
70% of their time in Blocked Synch state (blocked waiting 
for the synchronization with other HttpProcessors in a 
monitor). This kind of contention can be produced due to 
the saturation of the available processors on 
multiprocessor systems, as occurred in this case. When 
running with four processors, the time spent in Ready 
state and Blocked Synch state is also increased. 

Notice that, although the cause of the server saturation 
is the same when running with one, two or four processors 
(there are not processors enough to support demanded 
computation), this saturation is manifested in different 
forms (waiting for a processor to become available in 
order to execute or in a contention situation produced by 
the saturation of processors). 

With the analysis performed, we can conclude that the 
processor is a bottleneck for Tomcat performance and 
scalability when running dynamic web applications in a 
secure environment. We have demonstrated that running 
with more processors makes the server able to handle 
more clients before saturating, and even when the server 
has reached a saturated state, better throughput can be 
obtained if running with more processors.  

 

7. Related work 
 

Application server scalability constitutes an important 
issue to support the increasing number of users of secure 
dynamic web sites. Although this work focuses on 
maintaining server scalability when running in secure 
environments adding more resources (vertical scaling), the 
great computational demand of SSL protocol can be 
handled using other approaches.  

Major J2EE vendors such as BEA [6] or IBM [2][12] 
use clustering (horizontal scaling) to achieve scalability 
and high availability. Several studies evaluating server 
scalability using clustering have been performed [2][18], 
but none of them considers security issues. 

Scalability can be also achieved delegating the security 
issues on a web server (e.g. Apache web server [4]) while 
the application server only processes dynamic web 
requests. In this case, the computational demand will be 
transferred to the web server, which can be optimized for 
SSL management.  

It is also possible to add new specialized hardware for 
processing SSL requests [28], reducing the processor 
demand, but increasing the cost of the system. 

Related with the vertical scalability covered in this 
paper, some works have evaluated this scalability on web 
servers or application servers. For example, [8] and [20] 
only consider static web content, and in [3][8][20][25] the 
evaluation is limited to a numerical study without 
performing an analysis to justify the scalability results 
obtained. Besides, none of these works evaluates the 
effect of security on application server scalability. 

Other works try to improve application server 
scalability by tuning some server parameters and/or JVM 
options and/or operating system properties. For example, 
Tomcat scalability while tuning some parameters, 
including different JVM implementations, JVM flags and 
XML implementations has been studied in [24]. In the 
same way, the application server scalability using 

Figure 8. State of HttpProcessors when they are in the 
SSL handshake phase of a connection 
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different mechanisms for generating dynamic web content 
has been evaluated in [11]. However, none of these works 
considers any kind of scalability relative to resources 
(neither vertical nor horizontal), neither the influence of 
security on the application server scalability. 

Certain kind of analysis has been performed in some 
works. For example, [1] and [11] provide a quantitative 
analysis based on general metrics of application server 
execution collecting system utilization statistics (CPU, 
memory, network bandwidth, etc.). These statistics may 
allow the detection of some application server 
bottlenecks, but this coarse-grain analysis is often not 
enough when dealing with more sophisticated 
performance problems. 

The influence of security on application server 
scalability has been covered in some works. For example, 
the performance and architectural impact of SSL on the 
servers in terms of various parameters such as throughput, 
utilization, cache sizes and cache miss ratios has been 
analyzed in [23], concluding that SSL increases 
computational cost of transactions by a factor of 5-7. The 
impact of each individual operation of TLS protocol in the 
context of web servers has been studied in [13], showing 
that key exchange is the slowest operation in the protocol. 
[16] analyzes the impact of full handshake in connection 
establishment and proposes caching sessions to reduce it. 

Security for Web Services can be also provided with 
SSL, but other proposals as WS-Security [21], which uses 
industry standards like XML Encryption and XML 
Signature, have been made. Coupled with WS-
SecureConversation, the advantage WS-Security has over 
SSL over HTTP is twofold: first, it works independently 
of the underlying transport protocol and second, it 
provides security mechanisms that operate in end-to-end 
scenarios (across trust boundaries) as opposed to point-to-
point scenarios (i.e. SSL). Anyway, WS-Security requires 
also a great computational demand to support the 
encryption mechanisms, making most of the conclusions 
obtained in this paper valid in Web Services environments 
too.  

Our approach intends to achieve a complete 
characterization of dynamic web applications using SSL 
vertical scalability determining the causes of server 
saturation performing a detailed analysis of application 
server behavior considering all levels involved in the 
execution of dynamic web applications. 

 

8. Conclusions 
 

In this paper we have presented a complete 
characterization of Tomcat application server scalability 
when executing the RUBiS benchmark using SSL, which 
is very valuable considering the few related work in this 
topic. This characterization is divided in two parts. 

First, we have measured Tomcat vertical scalability 
(i.e. adding more processors) when using SSL and we 
have analyzed the effect of this addition on server 
scalability. The results confirmed that running with more 
processors makes the server able to handle more clients 
before saturating and even when the server has reached a 
saturated state, better throughput can be obtained if 
running with more processors. Second, we have analyzed 
the causes of server saturation when running with different 
number of processors using a performance analysis 
framework. This framework allows a fine-grain analysis 
of dynamic web applications by considering all levels 
involved in their execution. Our analysis has revealed that 
the processor is a bottleneck for Tomcat performance on 
secure environments and could make sense to upgrade the 
system adding more processors to improve the server 
scalability. 

The results obtained in this work demonstrate the 
convenience of incorporating to the Tomcat server some 
kind of overload control mechanism to avoid the 
throughput degradation produced due to the massive 
arrival of full SSL connections that we have shown in this 
paper. The server could differentiate full SSL connections 
from resumed SSL connections limiting the acceptation of 
full SSL connections to the maximum number acceptable 
without saturating, while accepting all the resumed SSL 
connections to maximize the number of client sessions 
successfully completed.  

Although this work focuses on maintaining server 
scalability when running in secure environments adding 
more resources (vertical scalability), the great 
computational demand of SSL protocol can be handled 
using other approaches as described in Section 7. 
Whichever approach is used, it is necessary to consider 
the security as an important issue that can heavily affect 
the scalability and performance of web applications. 
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