
Characterizing Secure Dynamic Web Applications Scalability

Jordi Guitart, Vicenç Beltran, David Carrera, Jordi Torres and Eduard Ayguadé
European Center for Parallelism of Barcelona (CEPBA)

Computer Architecture Department - Technical University of Catalonia
C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034 Barcelona (Spain)

{jguitart, vbeltran, dcarrera, torres, eduard}@ac.upc.edu

Abstract

Security in the access to web contents and the
interaction with web sites is becoming one of the most
important issues in Internet. Servers need to provide
certain levels of security so that the user feels comfortable
when running the applications that provide the services
he/she requires. HTTP over SSL is the most used solution,
providing mutual authentication between the two
interacting parts. The SSL protocol does not introduce
complexity in web applications but increases the
computational demand on the server, reducing its
capacity to serve large number of clients and increasing
the time to serve them.

In order to compensate the degradation in the quality
of service, the server needs to be upgraded with
additional resources, mainly processors and memory. In
this paper we analyze the scalability of servers that run
secure dynamic web applications. We analyze how the
server behaves when it is stressed with different number
of clients and how the quality of service is degraded. We
perform a detailed analysis of the server behavior and
analyze the impact of adding more processors to the
system that runs the server. The analysis is done using a
fine-grained analysis framework that considers all levels
in the application server execution (i.e. application,
server, JVM and OS kernel). The RUBiS auction site
benchmark is used to stress a Tomcat application server
running on a commodity 4-way multiprocessor Intel
platform with Linux.

1. Introduction

Current web sites have to face two issues that affect
directly to the site scalability. First, the web community is
growing day after day, increasing exponentially the load
that sites must support to satisfy all clients requests.
Second, dynamic web content is becoming popular on
current sites. At the same time, all information that is
confidential or has market value must be carefully
protected when transmitted over the open Internet.

Security between network nodes over the Internet is
traditionally provided using HTTPS [32]. With HTTPS,
which is based on using HTTP over SSL (Secure Socket
Layer [15]), you can perform mutual authentication of
both the sender and receiver of messages and ensure
message confidentiality. This process involves X.509
certificates that are configured on both sides of the
connection. This widespread diffusion of dynamic web
content and SSL increases the performance demand on
application servers that host the sites. Due to these two
facts, the scalability of these application servers has
become a crucial issue in order to support the maximum
number of concurrent clients demanding secure dynamic
web content.

Characterizing application servers scalability is
something more complex than measuring the application
server performance with different number of clients and
determining the load that saturates the server. A complete
characterization must also supply the causes of this
saturation, giving to the server administrator the chance
and the information to improve the server scalability by
avoiding its saturation. For this reason, this
characterization requires of powerful analysis tools that
allow an in-depth analysis of the application server
behavior and its interaction with the other system
elements (including distributed clients, a database server,
etc.). These tools must support and consider all the levels
involved in the execution of web applications (operating
system, Java Virtual Machine, application server and
application) if they want to provide significant
performance information to the administrators because the
origin of performance problems can reside in any of these
levels or in their interaction.

A complete scalability characterization must also
consider another important issue: the scalability relative to
the resources. The analysis for determining the causes of
server saturation can reveal that some resource is being a
bottleneck for server scalability. In this case, a good
option could be the addition of more resources of this type
and the evaluation of the effect of this addition on server
behavior in order to determine the causes of server

saturation. On the other side, although any resource has
been detected as a bottleneck for server scalability, the
analysis of server behavior when adding more resources
can be performed to verify if server saturation problem
remains unresolved.

In this paper we present a characterization of secure
dynamic web applications scalability divided in two parts.
First, we measure the vertical scalability of the server if
running with different number of processors, determining
the impact of adding more processors on server saturation.
Second, we perform a detailed analysis of the server
behavior using a performance analysis framework, in
order to determine the causes of the server saturation
when running with different number of processors. This
framework considers all levels involved in the application
server execution, allowing a fine-grain analysis of
dynamic web applications.

The rest of the paper is organized as follows: Section 2
introduces dynamic web applications. Section 3
introduces the SSL protocol used to provide security
capabilities when accessing web content. Section 4
describes our proposal for analyzing the scalability of
secure dynamic web applications. Section 5 describes the
experimental environment used in our evaluation. Section
6 presents our evaluation of secure dynamic web
applications scalability. Section 7 presents the related
work and finally, Section 8 presents the conclusions of
this paper.

2. Dynamic web applications

Dynamic web applications are a case of multi-tier
application and are mainly composed of a Client tier and a
Server tier, which in its turn uses to consist of a front-end
web server, an application server and a back-end
database. The client tier is responsible of interacting with
application users and to generate requests to be attended
by the server. The server tier implements the logic of the
application and is responsible of serving user-generated
requests.

When the client sends to the web server an HTTP
request for dynamic content, the web server forwards the
request to the application server (as understood in this
paper, a web server only serves static content), which is
the dynamic content server. The application server
executes the corresponding code, which may need to
access the database to generate the response. The
application server formats and assembles the results into
an HTML page, which is returned as an HTTP response to
the client.

The implementation of the application logic in the
application server may take various forms, including PHP
[31], Microsoft Active Server Pages [26], Java Servlets
[34] and Enterprise Java Beans (EJB) [33]. This study

focuses on Java Servlets, but the same methodology can
be applied with the other mechanisms for generating
dynamic web content, in order to characterize their
scalability.

A servlet is a Java class used to extend the capabilities
of servers that host applications accessed via a request-
response programming model. Although servlets can
respond to any type of request, they are commonly used to
extend the applications hosted by web servers. For such
applications, Java Servlet technology defines HTTP-
specific servlet classes.

Servlets access the database explicitly, using the
standard JDBC interface, which is supported by all major
databases. Servlets can use all the features of Java. In
particular, they can use Java built-in synchronization
mechanisms to perform locking operations.

3. SSL protocol

The SSL protocol provides communications privacy
over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery. To
obtain these objectives it uses a combination of public-key
and private-key cryptography algorithm and digital
certificates (X.509).

The SSL protocol does not introduce a new degree of
complexity in web applications structure because it works
almost transparently on top of the socket layer. However,
SSL increases the computation time necessary to serve a
connection remarkably, due to the use of cryptography to
achieve their objectives. This increment has a noticeable
impact on server performance, which can be appreciated
on Figure 1. This figure compares the throughput obtained
by the Tomcat application server, configured as described
in Section 5, using secure connections versus using
normal connections. Notice that the maximum throughput

Figure 1. Tomcat scalability when serving secure vs.
non-secure connections

obtained when using SSL connections is 72 replies/s and
the server scales only until 200 clients. On the other side,
when using normal connections the throughput is
considerably higher (550 replies/s) and the server can
scale until 1700 clients. Finally, notice also that when the
server is saturated, if attending normal connections, the
server can maintain the throughput if new clients arrive,
but if attending SSL connections, the server cannot
maintain the throughput and the performance is degraded.
More information about the impact of using SSL on server
performance can be found on [9].

The SSL protocol fundamentally has two phases of
operation: SSL handshake and SSL record protocol. We
will do an overview of the SSL handshake phase, which is
the responsible of most of the computation time required
when using SSL. The detailed description of the whole
protocol can be found in RFC 2246 [14].

The SSL handshake allows the server to authenticate
itself to the client using public-key techniques like RSA,
and then allows the client and the server to cooperate in
the creation of symmetric keys used for rapid encryption,
decryption, and tamper detection during the session that
follows. Optionally, the handshake also allows the client
to authenticate itself to the server.

Two different SSL handshake types can be
distinguished: The full SSL handshake and the resumed
SSL handshake. The full SSL handshake is negotiated
when a client establishes a new SSL connection with the
server, and requires the complete negotiation of the SSL
handshake. This negotiation includes parts that spend a lot
of computation time to be accomplished. We have
measured the computational demand of a full SSL
handshake in a 1.4 GHz Xeon machine to be around 175
ms.

The SSL resumed handshake is negotiated when a
client establishes a new HTTP connection with the server
but using an existing SSL connection. As the SSL session
ID is reused, part of the SSL handshake negotiation can
be avoided, reducing considerably the computation
demand for performing a resumed SSL handshake. We
have measured the computational demand of a resumed
handshake in a 1.4 GHz Xeon machine to be around 2 ms.
Notice the big difference between negotiate a full SSL
handshake respect to negotiate a resumed SSL handshake
(175 ms versus 2 ms).

4. Servers scalability

The scalability of an application server is defined as
the ability to maintain a site availability, reliability, and
performance as the amount of simultaneous web traffic, or
load, hitting the application server increases [19].

Given this definition, the scalability of an application
server can be represented measuring the performance of

the application server while the load increases. With this
representation, the load that provokes the saturation of the
server can be detected. We consider that the application
server is saturated when it is unable to maintain the site
availability, reliability, and performance (i.e. the server
does not scale). As derived from the definition, when the
server is saturated, the performance is degraded (lower
throughput and higher response time) and the number of
client requests refused is increased.

At this point, two questions should appear to the reader
(and of course, to the application server administrator).
First, the load that provokes the saturation of the server
has been detected, but why is this load causing the server
performance to degrade? In other words, in which parts of
the system (CPU, database, network, etc.) will a request
be spending most of its execution time at the saturation
points? In order to answer this question, we propose to
analyze the application server behavior using a
performance analysis framework, which considers all
levels involved in the application server execution
(operating system, JVM, application server and
application), allowing a fine-grain analysis of dynamic
web applications.

Second, the application server scalability with given
resources has been measured, but how would affect to the
application server scalability the addition of more
resources? This adds a new dimension to the application
servers scalability: the measurement of the scalability
relative to the resources. This scalability can be done in
two different ways: vertical and horizontal.

Vertical scalability (also called scaling up) is achieved
by adding capacity (memory, processors, etc.) to an
existing application server and requires few to no changes
to the architecture of the system. Vertical scalability
increases the performance (in theory) and the
manageability of the system, but decreases the reliability
and availability (single failure is more likely to lead to
system failure). We will consider this kind of scalability
relative to the resources in this paper.

Horizontal scalability (also called scaling out) is
achieved by adding new application servers to the system,
increasing the complexity of the system. Horizontal
scalability increases the reliability, the availability and the
performance (depends on load balancing), but decreases
the manageability (there are more elements in the system).

The analysis of the application server behavior will
provide us with hints to answer the question about how
would affect to the application server scalability the
addition of more resources. If we detect that some
resource is being a bottleneck for the application server
performance, this encourages the addition of new
resources of this type (vertical scaling), the measurement
of the scalability with this new configuration and the
analysis of the application server behavior with the

performance analysis framework to determine the
improvement on the server scalability and the new causes
of server saturation.

On the other side, if we upgrade a resource that is not
being a bottleneck for the application server performance,
we can verify with the performance analysis framework
that scalability is not improved and the causes of server
performance degradation remain unresolved. This
observation justifies why with vertically scaling
performance is improved only in theory, depending if the
added resource is a bottleneck for server performance or
not. This observation also motivates the analysis of the
application server behavior in order to detect the causes of
saturation before adding new resources.

5. Experimental environment

5.1 Tomcat servlet container

We use Tomcat v5.0.19 [22] as the application server.
Tomcat is an open-source servlet container developed
under the Apache license. Its primary goal is to serve as a
reference implementation of the Sun Servlet and JSP
specifications, and to be a quality production servlet
container too. Tomcat can work as a standalone server
(serving both static and dynamic web content) or as a
helper for a web server (serving only dynamic web
content). In this paper we use Tomcat as a standalone
server.

Tomcat follows a connection service schema where, at
a given time, one thread (an HttpProcessor) is responsible
of accepting a new incoming connection on the server
listening port and assigning to it a socket structure. From
this point, this HttpProcessor will be responsible of
attending and serving the received requests through the
persistent connection established with the client, while
another HttpProcessor will continue accepting new
connections. HttpProcessors are commonly chosen from a
pool of threads in order to avoid thread creation
overheads.

Persistent connections are a feature of HTTP 1.1 that
allows serving different requests using the same
connection, saving a lot of work and time for the web
server, client and the network, considering that
establishing and tearing down HTTP connections is an
expensive operation.

The pattern of a persistent connection in Tomcat is
shown in Figure 2. In this example, three different
requests are served through the same connection. The rest
of the time (connection (no request)) the server is
maintaining opened the connection waiting for another
client request. A connection timeout is programmed to
close the connection if no more requests are received.
Notice that within every request is distinguished the
service (execution of the servlet implementing the
demanded request) from the request (no service). This is
the pre and post process that Tomcat requires to invoke
the servlet that implements the demanded request.

Figure 3 shows the pattern of a secure persistent
connection in Tomcat. Notice that when using SSL the
pattern of the HTTP persistent connection is maintained,
but the underlying SSL connection supporting this
persistent HTTP connection must be established
previously, negotiating a SSL handshake, which can be
full or resumed depending if a SSL Session ID is reused.
For instance, if a client must establish a new HTTP
connection because its current HTTP connection has been
closed by the server due to connection persistence timeout
expiration, as it reuses the underlying SSL connection, it
negotiates a resumed SSL handshake.

We have configured Tomcat setting the maximum
number of HttpProcessors to 100 and the connection
persistence timeout to 10 seconds.

5.2 Auction site benchmark (RUBiS)

The experimental environment also includes a
deployment of the RUBiS (Rice University Bidding
System) [1] benchmark servlets version 1.4 on Tomcat.
RUBiS implements the core functionality of an auction

service

request

connection

request (no service)

connection (no request)

Figure 2. Tomcat persistent connection pattern

service

request

connection

request (no service)

connection (no request)

SSL
handshake

Figure 3. Tomcat secure persistent connection pattern

site: selling, browsing and bidding. RUBiS defines 27
interactions. Among the most important ones are browsing
items by category or region, bidding, buying or selling
items and leaving comments on other users. 5 of the 27
interactions are implemented using static HTML pages.
The remaining 22 interactions require data to be generated
dynamically. RUBiS supplies implementations using some
mechanisms for generating dynamic web content like
PHP, Servlets and several kinds of EJB.

The client workload for the experiments was generated
using a workload generator and web performance
measurement tool called Httperf [27]. This tool, which
support both HTTP and HTTPS protocols, allows the
creation of a continuous flow of HTTP/S requests issued
from one or more client machines and processed by one
server machine: the SUT (System Under Test). The
configuration parameters of the benchmarking tool used
for the experiments presented in this paper were set to
create a realistic workload, with non-uniform reply sizes,
and to sustain a continuous load on the server. One of the
parameters of the tool represents the number of concurrent
clients interacting with the server. Each emulated client
opens a session with the server. The session remains alive
for a period of time, called session time, at the end of
which the connection is closed. Each session is a
persistent HTTP/S connection with the server. Using this
connection, the client repeatedly makes a request (the
client can also pipeline some requests), parses the server
response to the request, and follows a link embedded in
the response. The workload distribution generated by
Httperf was extracted from the RUBiS client emulator,
which uses a Markov model to determine which
subsequent link from the response to follow. Each
emulated client waits for an amount of time, called the
think time, before initiating the next interaction. This
emulates the “thinking” period of a real client who takes a
period of time before clicking on the next request. The
think time is generated from a negative exponential
distribution with a mean of 7 seconds. Httperf allows also
configuring a client timeout. If this timeout is elapsed and
no reply has been received from the server, the current
persistent connection with the server is discarded, and a
new emulated client is initiated. We have configured
Httperf setting the client timeout value to 10 seconds.
RUBiS defines two workload mixes: a browsing mix
made up of only read-only interactions and a bidding mix
that includes 15% read-write interactions.

5.3 Performance analysis framework

In order to determine the causes of the server
saturation, we propose to analyze the application server
behavior using a performance analysis framework. This
framework, which consists of an instrumentation tool

called Java Instrumentation Suite (JIS [10]) and a
visualization and analysis tool called Paraver [30],
considers all levels involved in the application server
execution (operating system, JVM, application server and
application), allowing a fine-grain analysis of dynamic
web applications. For example, the framework can
provide detailed information about thread status, system
calls (I/O, sockets, memory & thread management, etc.),
monitors, services, connections, etc. Further information
about the implementation of the performance analysis
framework and its use for the analysis of dynamic web
applications can be found in [10] and [17].

5.4 Hardware & software platform

Tomcat runs on a 4-way Intel XEON 1.4 GHz with 2
GB RAM. We use MySQL v4.0.18 [29] as our database
server with the MM.MySQL v3.0.8 JDBC driver. MySQL
runs on a 2-way Intel XEON 2.4 GHz with 2 GB RAM.
We have also a 2-way Intel XEON 2.4 GHz with 2 GB
RAM machine running the workload generator (Httperf
0.8). Each client emulation machine emulates the
configured number of clients performing requests to the
server during 10 minutes using the browsing mix (read-
only interactions). All the machines run the 2.6.2 Linux
kernel. Server machine is connected with client machine
through a 1 Gbps Ethernet interface. Database and server
machine are direct connected through 100 Mbps fast
Ethernet crossed-link. For our experiments we use the Sun
JVM 1.4.2 for Linux, using the server JVM instead of the
client JVM and setting the initial and the maximum Java
heap size to 1024 MB, which we have proven to be
enough to avoid memory being a bottleneck for
performance.

All the tests are performed with the common RSA-
3DES-SHA cipher suit. Handshake is performed with
1024 bit RSA key. Record protocol uses triple DES to
encrypt all application data. Finally, SHA digest algorithm
provides the Message Authentication Code (MAC).

6. Evaluation

In this section we present the scalability
characterization of Tomcat application server when
running the RUBiS benchmark using SSL. The evaluation
is divided in two parts. First, we evaluate the vertical
scalability of the server when running with different
number of processors, determining the impact of adding
more processors on server saturation (can the server
support more clients before saturating?) Second, we
perform a detailed analysis of the server behavior using a
performance analysis framework, in order to determine
the causes of the server saturation when running with
different number of processors.

6.1 Tomcat vertical scalability

Figure 4 shows the Tomcat scalability when running
with different number of processors, representing the
server throughput as a function of the number of clients.
Notice that for a given number of processors, the server
throughput increases linearly with respect to the input load
(the server scales) until a determined number of clients hit
the server. At this point, the throughput achieves its
maximum value. Table 1 shows the number of clients that
saturate the server and the maximum achieved throughput
before saturating when running with one, two and four
processors. Notice that running with more processors
allows the server to handle more clients before saturating,
so the maximum achieved throughput is higher.

Notice also that the same throughput can be achieved,
as shown in Figure 1, with a single processor when SSL is
not used. This means that when using secure connections,
the computing capacity provided when adding more
processors is spent on supporting the SSL protocol.

Table 1. Number of clients that saturate the server and
maximum achieved throughput before saturating

number of
processors

number of
clients

throughput
(replies/s)

1 250 90

2 500 172

4 950 279

When the number of clients that saturate the server has
been achieved, the server throughput degrades to
approximately the 30% of the maximum achievable
throughput, as shown in Table 2. This table shows the
average throughput obtained when the server is saturated
when running with one, two and four processors. Notice
that, although the throughput obtained has been degraded

in all cases when the server has reached a saturated state,
running with more processors improves the throughput
(duplicating the number of processors, the throughput
almost duplicates too).

Table 2. Average server throughput when saturated
number of processors throughput (replies/s)

1 25

2 50

4 90

6.2 Tomcat scalability analysis

In order to perform a detailed analysis of the server, we
have selected four different loads: 200, 400, 800 and 1400
clients, each one corresponding to one of the zones
observed in Figure 4. These zones group the loads with
similar behavior of the server. In order to conduct this
analysis, we use the performance analysis framework
described in Section 5.3.

The analysis methodology consists of comparing the
server behavior when it is saturated (400 clients when
running with one processor, 800 clients when running
with two processors and 1400 clients when running with
four processors) with when it is not (200 clients when
running with one processor, 400 clients when running
with two processors and 800 clients when running with
four processors). We calculate a series of metrics
representing the server behavior, and determine which of
them are affected when increasing the number of clients.
From these metrics, an in-depth analysis is performed
looking for the causes of their dependence of server load.

Figure 5. Average time spent by the server processing a
persistent client connection

Figure 4. Tomcat scalability with different number of
processors

0

500

1000

1500

2000

2500

200 400 400 800 800 1400

1 CPU 2 CPU 4 CPU

#clients

tim
e

(m
s)

Avg service time (ms)

Avg request (no service) time (ms)

Avg connection (no request) time (ms)

Avg SSL handshake time (ms)

In order to detect the causes of server saturation we
calculate, using the performance analysis framework, the
average time spent by the server processing a persistent
client connection, distinguishing the time devoted to each
phase of the connection (connection phases have been
described in Section 5.1) when running with different
number of processors. This information is displayed in
Figure 5. As shown in this figure, running with more
processors decreases the average time required to process
a connection. Notice that when the server is saturated, the
average time required to handle a connection increases
considerably. Going into detail on the connection phases,
the time spent in the SSL handshake phase of the
connection increases from 28 ms to 1389 ms when
running with one processor, from 4 ms to 2003 ms when
running with two processors and from 4 ms to 857 ms
when running with four processors, becoming the phase
where the server spends the major part of the time when
processing a connection.

To determine the causes of the great increment of the
time spent in the SSL handshake phase of the connection,
we calculate the percentage of connections that perform a
resumed SSL handshake (reusing the SSL Session ID)
versus the percentage of connections that perform a full
SSL handshake when running with different number of
processors. This information is shown in Figure 6. Notice
that when running with one processor and with 200
clients, the 97% of SSL handshakes can reuse the SSL
connection, but with 400 clients, only the 27% can reuse
it. The rest must negotiate the full SSL handshake,
saturating the server because it cannot supply the
computational demand of these full SSL handshakes.
Remember the big difference between the computational
demand of a resumed SSL handshake (2 ms) and a full
SSL handshake (175 ms). The same situation is produced
when running with two processors (the percentage of full
SSL handshakes has increased from 0.25% to 68%), and
when running with four processors (from 0.2% to 63%).

We have determined that when running with any
number of processors the server saturates when most of
the incoming client connections must negotiate a full SSL
handshake instead of resuming an existing SSL
connection, requiring a computing capacity that the
available processors are unable to supply. Nevertheless,
why does this occur from a given number of clients? In
other words, why do incoming connections negotiate a full
SSL handshake instead of a resumed SSL handshake when
attending a given number of clients? Remember that we
have configured the client with a timeout of 10 seconds.
This means that if no reply is received in this time (the
server is unable to supply it because it is heavy loaded),
this client is discarded and a new one is initiated.
Remember that the initiation of a new client requires the

establishment of a new SSL connection, and therefore the
negotiation of a full SSL handshake.

Therefore, if the server is loaded and it cannot handle
the incoming requests before the client timeouts expire,
this provokes the arrival of a great amount of new client
connections that need the negotiation of a full SSL
handshake, provoking the server performance
degradation. This asseveration is supported with the
information of Figure 7. This figure shows the number of
clients timeouts occurred when running with different
number of processors. Notice that from a given number of
clients, the number of clients timeouts increases
considerably, because the server is unable to respond to
the clients before their timeouts expires. The comparison
of this figure with Figure 4 reveals that this given number
of clients matches with the saturation load of the server.

Figure 6. Incoming server connections classification
depending on SSL handshake type performed

Figure 7. Client timeouts with different number of
processors

0

20

40

60

80

100

200 400 400 800 800 1400

1 CPU 2 CPU 4 CPU

#clients

pe
rc

en
ta

ge

Full SSL handshake Resumed SSL handshake

In order to evaluate the effect on server of the great
amount of full SSL handshakes, we calculate, using the
performance analysis framework, the state of
HttpProcessors when they are in the SSL handshake phase
of the connection, which is shown in Figure 8. The
HttpProcessors can be running (Run state), blocked
waiting for the finalization of an input/output operation
(Blocked I/O state), blocked waiting for the
synchronization with other HttpProcessors in a monitor
(Blocked Synch) or waiting for a free processor to
become available to execute (Ready state). When the
server is not saturated, HttpProcessors spent most of their
time in Run state. But when the server is running with one
processor and saturates (400 clients) HttpProcessors spent
the 47% of their time in Ready state. This fact confirms
that the server cannot handle all the incoming full SSL
handshakes with only one processor.

It is expected that when the server is saturated and
running with two or four processors, the HttpProcessors
spent most part of their time of Ready state (waiting for a
free processor to execute), in the same way as when
running with one processor. But looking at Figure 8, we
discover that when the server is running with two
processors and saturates, although the time spent on
Ready state has increased, the HttpProcessors spent the
70% of their time in Blocked Synch state (blocked waiting
for the synchronization with other HttpProcessors in a
monitor). This kind of contention can be produced due to
the saturation of the available processors on
multiprocessor systems, as occurred in this case. When
running with four processors, the time spent in Ready
state and Blocked Synch state is also increased.

Notice that, although the cause of the server saturation
is the same when running with one, two or four processors
(there are not processors enough to support demanded
computation), this saturation is manifested in different
forms (waiting for a processor to become available in
order to execute or in a contention situation produced by
the saturation of processors).

With the analysis performed, we can conclude that the
processor is a bottleneck for Tomcat performance and
scalability when running dynamic web applications in a
secure environment. We have demonstrated that running
with more processors makes the server able to handle
more clients before saturating, and even when the server
has reached a saturated state, better throughput can be
obtained if running with more processors.

7. Related work

Application server scalability constitutes an important
issue to support the increasing number of users of secure
dynamic web sites. Although this work focuses on
maintaining server scalability when running in secure
environments adding more resources (vertical scaling), the
great computational demand of SSL protocol can be
handled using other approaches.

Major J2EE vendors such as BEA [6] or IBM [2][12]
use clustering (horizontal scaling) to achieve scalability
and high availability. Several studies evaluating server
scalability using clustering have been performed [2][18],
but none of them considers security issues.

Scalability can be also achieved delegating the security
issues on a web server (e.g. Apache web server [4]) while
the application server only processes dynamic web
requests. In this case, the computational demand will be
transferred to the web server, which can be optimized for
SSL management.

It is also possible to add new specialized hardware for
processing SSL requests [28], reducing the processor
demand, but increasing the cost of the system.

Related with the vertical scalability covered in this
paper, some works have evaluated this scalability on web
servers or application servers. For example, [8] and [20]
only consider static web content, and in [3][8][20][25] the
evaluation is limited to a numerical study without
performing an analysis to justify the scalability results
obtained. Besides, none of these works evaluates the
effect of security on application server scalability.

Other works try to improve application server
scalability by tuning some server parameters and/or JVM
options and/or operating system properties. For example,
Tomcat scalability while tuning some parameters,
including different JVM implementations, JVM flags and
XML implementations has been studied in [24]. In the
same way, the application server scalability using

Figure 8. State of HttpProcessors when they are in the
SSL handshake phase of a connection

0

500

1000

1500

2000

2500

200 400 400 800 800 1400

1 CPU 2 CPU 4 CPU

#clients

tim
e

(m
s)

Run Blocked I/O Blocked Synch Ready

different mechanisms for generating dynamic web content
has been evaluated in [11]. However, none of these works
considers any kind of scalability relative to resources
(neither vertical nor horizontal), neither the influence of
security on the application server scalability.

Certain kind of analysis has been performed in some
works. For example, [1] and [11] provide a quantitative
analysis based on general metrics of application server
execution collecting system utilization statistics (CPU,
memory, network bandwidth, etc.). These statistics may
allow the detection of some application server
bottlenecks, but this coarse-grain analysis is often not
enough when dealing with more sophisticated
performance problems.

The influence of security on application server
scalability has been covered in some works. For example,
the performance and architectural impact of SSL on the
servers in terms of various parameters such as throughput,
utilization, cache sizes and cache miss ratios has been
analyzed in [23], concluding that SSL increases
computational cost of transactions by a factor of 5-7. The
impact of each individual operation of TLS protocol in the
context of web servers has been studied in [13], showing
that key exchange is the slowest operation in the protocol.
[16] analyzes the impact of full handshake in connection
establishment and proposes caching sessions to reduce it.

Security for Web Services can be also provided with
SSL, but other proposals as WS-Security [21], which uses
industry standards like XML Encryption and XML
Signature, have been made. Coupled with WS-
SecureConversation, the advantage WS-Security has over
SSL over HTTP is twofold: first, it works independently
of the underlying transport protocol and second, it
provides security mechanisms that operate in end-to-end
scenarios (across trust boundaries) as opposed to point-to-
point scenarios (i.e. SSL). Anyway, WS-Security requires
also a great computational demand to support the
encryption mechanisms, making most of the conclusions
obtained in this paper valid in Web Services environments
too.

Our approach intends to achieve a complete
characterization of dynamic web applications using SSL
vertical scalability determining the causes of server
saturation performing a detailed analysis of application
server behavior considering all levels involved in the
execution of dynamic web applications.

8. Conclusions

In this paper we have presented a complete
characterization of Tomcat application server scalability
when executing the RUBiS benchmark using SSL, which
is very valuable considering the few related work in this
topic. This characterization is divided in two parts.

First, we have measured Tomcat vertical scalability
(i.e. adding more processors) when using SSL and we
have analyzed the effect of this addition on server
scalability. The results confirmed that running with more
processors makes the server able to handle more clients
before saturating and even when the server has reached a
saturated state, better throughput can be obtained if
running with more processors. Second, we have analyzed
the causes of server saturation when running with different
number of processors using a performance analysis
framework. This framework allows a fine-grain analysis
of dynamic web applications by considering all levels
involved in their execution. Our analysis has revealed that
the processor is a bottleneck for Tomcat performance on
secure environments and could make sense to upgrade the
system adding more processors to improve the server
scalability.

The results obtained in this work demonstrate the
convenience of incorporating to the Tomcat server some
kind of overload control mechanism to avoid the
throughput degradation produced due to the massive
arrival of full SSL connections that we have shown in this
paper. The server could differentiate full SSL connections
from resumed SSL connections limiting the acceptation of
full SSL connections to the maximum number acceptable
without saturating, while accepting all the resumed SSL
connections to maximize the number of client sessions
successfully completed.

Although this work focuses on maintaining server
scalability when running in secure environments adding
more resources (vertical scalability), the great
computational demand of SSL protocol can be handled
using other approaches as described in Section 7.
Whichever approach is used, it is necessary to consider
the security as an important issue that can heavily affect
the scalability and performance of web applications.

9. Acknowledgments

This work is supported by the Ministry of Science and
Technology of Spain and the European Union (FEDER
funds) under contracts TIC2001-0995-C02-01 and
TIN2004-07739-C02-01 and by the CEPBA (European
Center for Parallelism of Barcelona). For additional
information about the authors, please visit the Barcelona
eDragon Research Group web site [5].

10. References

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R.
Gil, J. Marguerite, K. Rajamani and W. Zwaenepoel.
Specification and Implementation of Dynamic Web Site
Benchmarks. IEEE 5th Annual Workshop on Workload
Characterization (WWC-5), Austin, Texas, USA.
November 25, 2002.

[2] Y. An, T. K. T. Lau and P. Shum. A Scalability Study for
WebSphere Application Server and DB2. IBM white paper.
January 2002. http://www-
106.ibm.com/developerworks/db2/library/techarticle/0202a
n/0202an.pdf

[3] S. Anne, A. Dickson, D. Eaton, J. Guizan and R. Maiolini.
JBoss 3.2.1 vs. WebSphere 5.0.2 Trade3 Benchmark. SMP
Scaling: Comparison report. SWG Competitive Technology
Lab. October 2003.
http://www.werner.be/blog/resources/werner/JBoss_3.2.1_
vs_WAS_5.0.2.pdf

[4] Apache HTTP Server Project
http://httpd.apache.org/

[5] Barcelona eDragon Research Group
http://www.cepba.upc.es/eDragon

[6] BEA Systems, Inc. Achieving Scalability and High
Availability for E-Business. BEA white paper. March
2003.
http://dev2dev.bea.com/products/wlserver81/whitepapers/
WLS_81_Clustering.jsp

[7] P. Barford and M. Crovella. Generating Representative
Web Workloads for Network and Server Performance
Evaluation. SIGMETRICS'98, pp. 151-160, Madison,
Wisconsin, USA. June 24-26, 1998.

[8] V. Beltran, D. Carrera, J. Torres and E. Ayguade.
Evaluating the Scalability of Java Event-Driven Web
Servers. 2004 International Conference on Parallel
Processing (ICPP’04), pp. 134-142, Montreal, Canada.
August 15-18, 2004.

[9] V. Beltran, J. Guitart, D. Carrera, J. Torres, E. Ayguadé
and J. Labarta. Performance Impact of Using SSL on
Dynamic Web Applications. XV Jornadas de Paralelismo,
pp. 471-476, Almeria, Spain. September 15-17, 2004.
http://people.ac.upc.es/jguitart/HomepageFiles/Jornadas04.pdf

[10] D. Carrera, J. Guitart, J. Torres, E. Ayguade and J. Labarta.
Complete Instrumentation Requirements for Performance
Analysis of Web based Technologies. 2003 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS’03), pp. 166-176, Austin,
Texas, USA. March 6-8, 2003.

[11] E. Cecchet, J. Marguerite and W. Zwaenepoel.
Performance and Scalability of EJB Applications. 17th
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’02), pp. 246-261. Seattle, Washington, USA.
November 4-8, 2002

[12] W. Chiu. Design for Scalability. IBM white paper.
September 2001. http://www-
106.ibm.com/developerworks/websphere/library/techarticle
s/hvws/scalability.html

[13] C. Coarfa, P. Druschel, and D. Wallach. Performance
Analysis of TLS Web Servers. 9th Network and Distributed
System Security Symposium (NDSS’02), San Diego,
California, USA. February 6-8, 2002.

[14] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
RFC 2246. January 1999.

[15] A. O. Freier, P. Karlton, and C. Kocher. The SSL Protocol,
Version 3.0. November 1996.

[16] A. Goldberg, R. Buff and A. Schmitt. Secure Web Server
Performance Dramatically Improved by Caching SSL

Session Keys. Workshop on Internet Server Performance
(WISP’98) (in conjunction with SIGMETRICS’98),
Madison, Wisconsin, USA. June 23, 1998.

[17] J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta.
Tuning Dynamic Web Applications using Fine-Grain
Analysis. 13th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP'05),
Lugano, Switzerland. February 9-11, 2005.

[18] I. Haddad and G. Butler. Experimental Studies of
Scalability in Clustered Web System. Workshop on
Communication Architecture for Clusters (CAC’04) (in
conjunction with International Parallel and Distributed
Processing Symposium (IPDPS’04)), Santa Fe, New
Mexico, USA. April 26, 2004.

[19] I. Haddad. Scalability Issues and Clustered Web Servers.
Technical Report. Concordia University. August 13, 2000.

[20] I. Haddad. Open-Source Web Servers: Performance on
Carrier-Class Linux Platform. Linux Journal, Volume
2001, Issue 91, page 1. November 2001.

[21] IBM Corporation, Microsoft Corporation and VeriSign Inc.
Web Services Security (WS-Security) Specification.
Version 1.0.05. April 2002. http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/

[22] Jakarta Tomcat Servlet Container
http://jakarta.apache.org/tomcat

[23] K. Kant, R. Iyer, and P. Mohapatra. Architectural Impact of
Secure Socket Layer on Internet Servers. 2000 IEEE
International Conference on Computer Design (ICCD’00),
pp. 7-14, Austin, Texas, USA. September 17-20, 2000.

[24] P. Lin. So You Want High Performance (Tomcat
Performance). September 2003.
http://jakarta.apache.org/tomcat/articles/performance.pdf

[25] M. Malzacher and T. Kochie. Using a Web application
server to provide flexible and scalable e-business solutions.
IBM white paper. April 2002. http://www-
900.ibm.com/cn/software/websphere/products/download/w
hitepapers/performance_40.pdf

[26] Microsoft Active Server Pages
http://www.asp.net

[27] D. Mosberger and T. Jin. httperf: A Tool for Measuring
Web Server Performance. Workshop on Internet Server
Performance (WISP’98) (in conjunction with
SIGMETRICS’98), pp. 59-67. Madison, Wisconsin, USA.
June 23, 1998.

[28] R. Mraz. SecureBlue: An Architecture for a High Volume
SSL Internet Server. 17th Annual Computer Security
Applications Conference (ACSAC’01), New Orleans,
Louisiana, USA. December 10-14, 2001.

[29] MySQL
http://www.mysql.com

[30] Paraver
http://www.cepba.upc.es/paraver

[31] PHP Hypertext Preprocessor
http://www.php.net

[32] E. Rescorla. HTTP over TLS. RFC 2818. May 2000.
[33] Sun Microsystems. Enterprise Java Beans Technology

http://java.sun.com/products/ejb
[34] Sun Microsystems. Java Servlets Technology

http://java.sun.com/products/servlet

