
Luis M. Vaquero
HP Labs, UK

Juan Cáceres
Telefonica R&D Labs, Spain

Juan J. Hierro
Telefonica, Spain

Open Source Cloud
Computing Systems:
Practices and Paradigms

Open source cloud computing systems: practices and paradigms / Luis M. Vaquero, Juan Caceres, and Juan J. Hierro,
editors.
 p. cm.
 Summary: “This book bridges the gap between solutions and users’ needs pertaining to the most relevant open source cloud
technologies available today from a practical perspective”-- Provided by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-4666-0098-0 (hardcover) -- ISBN 978-1-4666-0099-7 (ebook) -- ISBN 978-1-4666-0100-0 (print & perpetual
access) 1. Cloud computing. 2. Open source software. I. Vaquero, Luis M. II. Caceres, Juan, 1973- III. Hierro, Juan J.,
1966-
 QA76.585.O64 2012
 004.6782--dc23
 2011043983

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather Probst
Book Production Manager: Sean Woznicki
Development Manager: Joel Gamon
Development Editor: Myla Harty
Acquisitions Editor: Erika Gallagher
Typesetter: Christopher Shearer
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer, Greg Snader

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

44

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

INTRODUCTION

EMOTIVE (Elastic Management of Tasks in Vir-
tualized Environments) (EMOTIVE, 2009) is the
Barcelona Supercomputing Center (BSC)’s IaaS
open-source solution for Cloud Computing, which

results from BSC’s previous experience in Euro-
pean projects such as BREIN (BREIN, 2006-2009)
and SORMA (SORMA, 2006-2009). EMOTIVE
provides users with elastic fully customized virtual
environments (supporting different hypervisors
such as Xen, KVM, or VirtualBox) in which to
execute their applications. Further, it simplifies

Alex Vaqué
Polytechnic University of Catalonia, Spain & Barcelona Supercomputing Center, Spain

Iñigo Goiri
Polytechnic University of Catalonia, Spain & Barcelona Supercomputing Center, Spain

Jordi Guitart
Polytechnic University of Catalonia, Spain & Barcelona Supercomputing Center, Spain

Jordi Torres
Polytechnic University of Catalonia, Spain & Barcelona Supercomputing Center, Spain

EMOTIVE Cloud:
The BSC’s IaaS Open Source

Solution for Cloud Computing

ABSTRACT

This chapter introduces Elastic Management of Tasks in Virtualized Environments (EMOTIVE), which
is the Barcelona Supercomputing Center (BSC)’s IaaS open-source solution for Cloud Computing.
EMOTIVE provides users with elastic fully customized virtual environments in which to execute their ap-
plications. Further, it simplifies the development of new middleware services for managing Cloud systems
by supporting resource allocation and monitoring, data management, live migration, and checkpoints.
These features and its facility to be extended and configured make EMOTIVE especially appropriate to
support research on Cloud Computing scenarios. Offering functionality comparable to its commercial
counterparts allows EMOTIME to be used on production to set up small Cloud platforms.

DOI: 10.4018/978-1-4666-0098-0.ch003

45

EMOTIVE Cloud

the development of new middleware services for
managing Cloud systems by supporting resource
allocation and monitoring, data management, live
migration, and checkpoints.

EMOTIVE enables the smart management of
the virtual environments using different schedul-
ing policies. Additionally, it is very easy to extend
thanks to its modular Web Service architecture.
This framework is being used by BSC to do re-
search in Cloud Computing, as well as in some
research projects such as VENUS-C (VENUS-C,
2010-2012), OPTIMIS (OPTIMIS, 2010-2013),
and NUBA (NUBA, 2009-2012).

In this chapter, we will describe the main
functionalities of EMOTIVE, how they are imple-
mented, and how EMOTIVE can be used to set
up a private, public, or hybrid Cloud solution.

General Architecture of the Solution

EMOTIVE middleware can be categorized as
an IaaS solution, since it provides the users with
virtualized environments where they can execute
their tasks without any extra effort. These VMs,
which aim to fulfill the user requirements in terms
of software and system capabilities, are transpar-
ently managed by EMOTIVE in order to exploit

the provider’s resources. EMOTIVE can easily
be extended with multiple scheduling policies in
order to manage the VMs using different criteria.

Figure 1 illustrates the EMOTIVE Cloud
architecture, which is mainly composed by three
different and modular layers: Virtualization
Fabrics, Virtual Machine Manager, and Virtual
Machine Scheduler.

The Virtualization Fabrics layer comprises
the physical resources where the VMs will run.
This layer wraps the virtualized resources and
offers them to the upper layers. EMOTIVE makes
use of the Libvirt JAVA API (Libvirt, 2005), which
makes it able to use multiple virtualization tech-
nologies. Actually, EMOTIVE currently supports
Xen, KVM, and VirtualBox hypervisors. Further-
more, it implements a distributed shared file
system (DFS) that supports efficient VM creation,
migration (to move VMs across provider’s hosts
without stopping the execution), and checkpoint-
ing (to resume VM execution upon hardware
failure). This file system also supports a global
repository where users can upload the input files
needed by the applications (i.e. data stage-in) and
retrieve the resulting ones (i.e. data stage-out).

The Virtual Machine Manager layer is imple-
mented by means of the Virtualized Resource

Figure 1. EMOTIVE cloud architecture

46

EMOTIVE Cloud

Management and Monitoring (VRMM), which
includes several subcomponents. On one side,
there is one Virtualization Manager (VtM) per
physical host, which is in charge of creating
and maintaining the whole virtual machine life
cycle (create, destroy, migrate, etc.). VMs are
created on demand, according to the application
requirements, both hardware (CPU type, amount
of resources required) and software (required
packages). These requirements are specified by
means of the Open Virtualization Format (OVF)
(DMTF, 2010). VPN support (with SSL and PPTP
protocol) and Virtual Networks (VLAN) are also
available for the VMs. Once the VMs are created,
the users can work directly with them using a SSH
connection, or use the EMOTIVE API to execute
tasks in them. Tasks are described by means of
a Job Submission Description Language (JSDL)
(OGF, 2008) file.

In addition, the VtM comprises all the local
resource management decisions (i.e. in a single
host): it is in charge of managing the physical
resources of a host and dynamically distributing
these resources among all the VMs running on that
host in order to fulfill their respective Service Level
Agreements (SLAs). EMOTIVE allows specify-
ing fine-grain resource-level guarantees in the
SLA (e.g. amount of computing power allocated
to a given VM over time) (Goiri, 2010b), which
are clearly superior to the availability guarantees
supported by common providers such as Amazon
EC2 (Amazon, 2006).

Furthermore, EMOTIVE also has, by means
of the VtME component, the capability to use
external resources, like the ones in public Cloud
providers (i.e. Amazon EC2). This feature allows
an EMOTIVE-enabled provider to be involved in
a Cloud federation (insourcing/outsourcing) and
create public, private, and hybrid clouds.

On the other side, the Resource Monitor (RM)
component continuously monitors the status of
tasks and resources. This status is stored in a his-
torical database, but it can be also used to assess the
fulfillment of the SLAs of the applications. If any

SLA violation is detected, an adaptation process
for requesting more resources to the provider is
started, first locally in each host, then globally
in the provider, and finally with other providers.

Finally, the Virtual Machine Scheduler layer
comprises all the global VM placement decisions,
both among different providers in a Cloud federa-
tion and different hosts in a single provider. This
layer is in charge of deciding where a VM will
be executed and managing its location during the
execution (e.g. migration of VMs across provider’s
hosts, cancellation of VMs, resumption of VM
execution from a checkpoint upon hardware fail-
ure, etc.). As a rule of thumb, the Scheduler tries
to consolidate the VMs in the provider’s physical
resources to optimize their use, while allocating
enough resources to fulfill the agreed SLAs.

Moreover, this framework allows multiple
schedulers with different policies and capabilities
such as machine learning, prediction, economic,
fault tolerance, semantic description, or SLA
enforcement. In this sense, it can use a simplistic
Round Robin, or a consolidation-aware scheduling
like Backfilling. This is achieved thanks to the us-
age of a common interface that allows developing
new schedulers with different features and poli-
cies. In particular, we encourage using the Open
Cloud Computing Interface (OCCI) (OGF, 2010),
which allows EMOTIVE to be interoperable with
other Cloud middleware supporting this interface.

Related Work

In the last years, numerous solutions for supporting
IaaS in the Cloud have appeared. Whereas the ma-
jority of them provide similar functionality, there
are some key factors that could be used to choose
one over the others. We can firstly distinguish
between proprietary and open-source solutions.
Amazon EC2 is the main example of the former,
while this book includes the most significant open-
source solutions. The latter includes EMOTIVE,
which has been released under a LGPL license.

47

EMOTIVE Cloud

In this way, it can be easily modified and adapted
to the user’s requirements.

We can then distinguish between production-
aimed and research-aimed solutions. The former
have strong requirements on stability, and for this
reason, they tend to use well-known (and simple)
management procedures. For this reason, they
typically have low rates of resource utilization
and energy efficiency. Production-aimed solutions
have also powerful security constraints and that
makes them sometimes difficult to deploy and
configure (e.g. Eucalyptus [Nurmi, 2009]). Being
a research-aimed solution, EMOTIVE provides
their users with basic capabilities that can be used
to implement complex management procedures for
Cloud middleware. In addition, it allows to setup
Cloud infrastructures that offer VMs on demand,
while introducing minimal overhead, being eas-
ily deployable and configurable, and also highly
scalable thanks to EMOTIVE layered distributed
architecture where every node is almost autono-
mous and controls its own resources.

Finally, we can distinguish between interoper-
able and stand-alone solutions. EMOTIVE sup-
ports the most common Cloud standards, both
at interface level (e.g. OCCI, OVF …) and at
virtualization level (e.g. Xen, KVM, Libvirt …).
In fact, it was originally designed to be used in

Cloud federations. This makes it highly interoper-
able with the most popular Cloud solutions (e.g.
Amazon EC2, OpenNebula [Fontan, 2008]).

Whereas in some aspects EMOTIVE capabili-
ties are not as powerful as the capabilities of their
counterparts, this is clearly compensated by of-
fering a controllable, scalable, interoperable, and
extensible solution to set up IaaS Clouds.

Most Relevant Interfaces

The problem with interoperability in Cloud provid-
ers is well-known. As shown in Figure 2, different
Cloud providers use their own and independent
interface. This makes it difficult to communicate
and federate multiple providers. Recently, OCCI
API has been proposed as a common standard in
order to overcome this problem. OCCI is a Cloud
Interaction Layer which uses HTTP methods (like
GET, POST, PUT, DELETE) using XML format.
This interface uses multiple data structures (i.e.
Compute, Network, Storage) to describe the dif-
ferent resources. Using these structures, it can
operate the virtual resources (i.e. create, list, show,
update, delete).

EMOTIVE was originally designed using a
distributed SOAP architecture but now it uses
RESTful Web Services. This architecture allows

Figure 2. Interfaces of different clouds

48

EMOTIVE Cloud

the usage of only some parts of EMOTIVE and
supports agile and dynamic construction of new
Cloud environments. Its REST interface makes
EMOTIVE highly interoperable with other Cloud
solutions.

Furthermore, popular Cloud solutions such as
OpenNebula have adopted OCCI to define their
interfaces. Aiming at interoperability with other
Cloud solutions, EMOTIVE also implements an
OCCI interface. Notice, however, that the standard
OCCI interface does not support all the original
EMOTIVE functionality. For this reason, there
are some methods for job and cluster management
that EMOTIVE supports using its original REST
interface. According to this, EMOTIVE Cloud cur-
rently supports two interfaces: EMOTIVE REST
API and the standard OCCI. In the following lines,
we describe briefly these two interfaces.

OCCI describes five methods that use Com-
pute and four for Network and Storage. EMO-
TIVE supports four of the Compute methods,

four Network methods, but it does not support
Storage methods. However, this does not mean
that EMOTIVE does not support storage at all.
In fact, EMOTIVE allows the specification of
bootable images for VMs in the disk section of
the OVF parameter that describes the VMs in the
Create methods. EMOTIVE is able to parse this
description and get the VM image from the loca-
tion specified by the user (e.g., an FTP server, an
Amazon S3 repository).

The methods comprising the EMOTIVE REST
interface are described in Table 1. The methods
with a correspondence in the OCCI interface are
shown boldfaced. Our interfaces basically allow:

•	 Compute: create, get, list, and cancel
Virtual Machines (we use OVF format to
describe the VMs).

•	 Network: similar to Compute methods but
used to describe virtual networks.

Table 1. EMOTIVE REST API. Correspondence with OCCI methods is noted in bold.

COMPUTE

· String Env-ID = createEnvironment (Compute)
· String Env-ID = createEnvironmentAndJob (Compute, JSDL)
· terminateEnvironment (String Env-ID)
· List <Env-ID> = getEnvironments ()
· Compute = getEnvironment (String Env-ID)
· String state = getEnvironmentState (String Env-ID)

NODES

· String [Node-ID or Env-ID] = getLocation (String [Env-ID or Act-ID])
· List <Node-ID> = getNodes ()
· nodeDown (String Node-ID)
· nodeUp (String Node-ID)

JOBS

· List <Act-ID> = getActivities ()
· Act-ID = submitActivity (JSDL)
· cancelActivity (String Act-ID)
· String status = getActivityStatus (String Act-ID)
· List <String Act-ID> = getAllActivities ()

NETWORK

· String Net-ID = createNetwork (Network)
· deleteNetwork (String Net-ID)
· Network = getNetwork (String Net-ID)
· List <Network> = getListNetworks ()
· String Net-ID = createVPN (Network)

49

EMOTIVE Cloud

•	 Jobs: used to submit jobs to Virtual
Machines (we use JSDL format to describe
the jobs).

•	 Nodes: describes the system topology
(used for EMOTIVE internals).

Table 2 shows the equivalence between the
methods used in EMOTIVE REST API and OCCI
API. It basically describes the mapping of the
OCCI REST methods to the EMOTIVE REST
methods. In fact, this is how we have implemented
our support to the OCCI API, that is by means of
a wrapper that translates OCCI methods to EMO-
TIVE REST ones.

Regarding the data structures used to describe
the resources, our createEnvironment(Compute)
method is able to support the same Compute
structure used in OpenNebula. An example of this
Compute structure is shown below.

<COMPUTE href=”http://www.open-
nebula.org/compute/32”>
<ID>12342-4356-12345-24324</ID>
<NAME>Web Server</NAME>
<STATE>running</STATE>
<DISK>
<STORAGE href=”http://www.open-
nebula.org/storage/34”/>

<TYPE>OS</TYPE>
<TARGET>hda</TARGET>
</DISK>
<DISK>
<STORAGE href=”http://www.open-
nebula.org/storage/24”/>
<TYPE>CDROM</TYPE>
<TARGET>hdc</TARGET>
</DISK>
<NIC>
<NETWORK href=”http://www.open-
nebula.org/network/12”/>
<MAC>00:ff:72:31:23:17</MAC>
<IP>192.168.0.12</IP>
</NIC>
</COMPUTE>

Similarly, an example of Network structure,
which is used in createNetwork(Network) method
is in the following.

<NETWORK href=”http://www.open-
nebula.org/network/12”>
<MAC>00:ff:72:31:23:17</MAC>
<IP>192.168.0.12</IP>
</NETWORK>

Table 2. Methods used in EMOTIVE cloud

COMPUTE

EMOTIVE Methods (Java) API OCCI (REST)

createEnvironment(Compute) /compute POST (PR)

terminateEnvironment(String id) /compute/id DELETE (ER)

getEnvironments() /compute GET (PR)

getEnvironment(String id) /compute/id GET (ER)

NETWORK

EMOTIVE Methods (Java) API OCCI (REST)

createNetwork(Network) /network/id POST (PR)

getNetworks() /network GET (PR)

deleteNetwork(String id) /network/id DELETE (ER)

getNetwork(String id) /network/id GET (ER)

50

EMOTIVE Cloud

I n s t e a d o f u s i n g C o m p u t e , o u r
createEnvironment(Compute) and createEnvi-
ronmentAndJob (Compute, JSDL) methods can
also support the usage of simple Open Virtualiza-
tion Format (OVF) files to describe the features
of the VMs to be created. The following is an
OVF example of one simple VM with 2 CPUs
and 2GB of memory.

< ? x m l v e r s i o n = ” 1 . 0 ”
encoding=”UTF-8”
standalone=”yes”?>
<ns1:Envelope xmlns:ns2=”http://
schemas.dmtf.org/wbem/wscim/1/
cim-schema/2/CIM_VirtualSystem-
SettingData”
xmlns:ns1=”http://schemas.
dmtf.org/ovf/envelope/1”
xmlns:ns4=”http://schemas.dmtf.
org/wbem/wscim/1/cim-
schema/2/CIM_ResourceAllocation-
SettingData” xmlns:ns3=”http://
schemas.dmtf.org/wbem/wscim/1/
common”>
<ns1:References>
<ns1:File ns1:href=”/cosa/fina.
img” ns1:id=”root”/>
<ns1:File ns1:size=”1073741824”
ns1:id=”home”/>
</ns1:References>
<ns1:VirtualSystem>
<ns1:Info>EMOTIVE Cloud Virtual
Machine Description</ns1:Info>
<ns1:VirtualHardwareSection>
<ns1:Item>
<ns4:AllocationUnits>cpu</
ns4:AllocationUnits>
<ns4:Description>Number of
CPUS</ns4:Description>
<ns4:ElementName>x86</
ns4:ElementName>
<ns4:InstanceID>1</
ns4:InstanceID>

<ns4:ResourceType>3</
ns4:ResourceType>
<ns4:VirtualQuantity>2</
ns4:VirtualQuantity>
</ns1:Item>
<ns1:Item>
<ns4:AllocationUnits>byte *
210</ns4:AllocationUnits>
<ns4:Description>RAM Memory</
ns4:Description>
<ns4:ElementName>2046MB of Memo-
ry</ns4:ElementName>
<ns4:InstanceID>2</
ns4:InstanceID>
<ns4:ResourceType>4</
ns4:ResourceType>
<ns4:VirtualQuantity>2046</
ns4:VirtualQuantity>
</ns1:Item>
<ns1:Item>
<ns4:Caption>Home drive</
ns4:Caption>
<ns4:HostResource>ovf:/file/
home</ns4:HostResource>
<ns4:InstanceID>3</
ns4:InstanceID>
<ns4:ResourceType>17</
ns4:ResourceType>
</ns1:Item>
<ns1:Item>
<ns4:Caption>Root drive</
ns4:Caption>
<ns4:HostResource>ovf:/file/
root</ns4:HostResource>
<ns4:InstanceID>4</
ns4:InstanceID>
<ns4:ResourceType>17</
ns4:ResourceType>
</ns1:Item>
</ns1:VirtualHardwareSection>
</ns1:VirtualSystem>
</ns1:Envelope>

51

EMOTIVE Cloud

In addition, EMOTIVE supports Job Submis-
sion Description Language (JSDL) to submit
jobs using the methods submitActivity(JSDL)
and createEnvironmentAndJob (Compute, JSDL).
JSDL is an extensible XML specification for
describing requirements of computational jobs.
It was initially focused in Grid but it is not re-
stricted to this environment. JSDL describes: job
name, description, resource requirements (RAM,
swap, CPU, number of CPUs, operating System,
etc.), execution limits, file staging, command
to execute… The following is an example of an
ANSYS CFX simulation JSDL.

< ? x m l v e r s i o n = ” 1 . 0 ”
encoding=”UTF-8”?>
<jsdl:JobDefinition
xmlns:jsdl=”http://schemas.ggf.
org/jsdl/2005/11/jsdl”
xmlns:jsdl-hpcpa=”http://sche-
mas.ggf.org/jsdl/2006/07/jsdl-
hpcpa”>
<jsdl:JobDescription>
<jsdl:JobIdentification>
<jsdl:JobName>AnsysDemo</
jsdl:JobName>
</jsdl:JobIdentification>
<jsdl:Application>
<jsdl:ApplicationName>AnsysCfx</
jsdl:ApplicationName>
<jsdl:ApplicationVersion>PM26</
jsdl:ApplicationVersion>
<jsdl-
hpcpa:HPCProfileApplication>
<jsdl-hpcpa:Argument>-cpu_
load=1.0</jsdl-hpcpa:Argument>
<jsdl-hpcpa:Argument>-threads_
num=2</jsdl-hpcpa:Argument>
</jsdl-
hpcpa:HPCProfileApplication>
</jsdl:Application>
</jsdl:JobDescription>
</jsdl:JobDefinition>

Relevant Use Cases

EMOTIVE enables the smart management of
virtual environments using different scheduling
policies. Additionally, it is very easy to extend it
thanks to its modular Web Service architecture.
According to this, this framework is being used in
BSC and UPC to do research in Cloud Comput-
ing, as well as in some research projects such as
BREIN, OPTIMIS, VENUS-C, and NUBA. This
is the main objective of EMOTIVE Cloud and not
to be a product like Eucalyptus, OpenNebula, or
OpenStack. There are a lot of research works that
use EMOTIVE Cloud to create test environments
or to perform research about virtual machines
scheduling or management. In the following lines,
we summarize some of the research works that
have used EMOTIVE as IaaS Cloud solution.

SERA Scheduler: Within the BREIN Euro-
pean project, BSC has developed a Semantically-
Enhanced Resource Allocator (SERA) (Ejarque,
2008; Goiri, 2009), which was an initial version
of EMOTIVE that distributed resources using
semantic information and used agents to com-
municate and support each component. In SERA,
tasks and resources are semantically described and
these descriptions are used to infer the resource
assignments. Virtualization is used to provide a
full-customized and isolated virtual environment
for each task. In addition, the system supports
fine-grain dynamic resource distribution among
these virtual environments based on SLAs. The
required adaptation is implemented using agents,
guarantying to each task enough resources to meet
the agreed performance goals.

Figure 3 shows the main components of SERA.
The Client Manager (CM) manages the client’s
task execution by requesting the required resources
and by running jobs. In addition, it makes decisions
about what must be done when unexpected events
such as SLA violations happen. The Semantic
Scheduler (SeS) allocates resources to each task
according to its requirements, its priority and the
system status, in such a way that the clients with

52

EMOTIVE Cloud

more priority are favored. Allocation decisions
are derived with a rule engine using semantic
descriptions of tasks and physical resources.
These resource descriptions are automatically
generated from the system properties and stored
in the Semantic Metadata Repository (SMR) when
the machine boots. The Resource Manager (RM)
creates virtual machines (VM) to execute clients’
tasks according to the minimum resource alloca-
tion (CPU, memory, disk space...) given by the SeS
and the task requirements (e.g. needed software).
Once the VM is created, the RM dynamically
redistributes the remaining resources among the
different tasks depending on the resource usage
of each task, its priority and its SLA status. This
resource redistribution mechanism allows increas-
ing the allocated resources to a task by reducing
the assignment to other tasks that are not using
them. Finally, the Application Manager (AM)
monitors the resource usage in order to evaluate
if an SLA is being violated.

Multifaceted Scheduler: Multifaceted sched-
uler (Goiri, 2010a) implements a new scheduling
policy to model and manage a virtualized data
center, which mainly focuses on the allocation of
VMs in the data center hosts according to mul-

tiple facets while optimizing the provider’s
profit. In particular, it considers energy effi-
ciency, virtualization overheads, fault tolerance,
and SLA violation penalties, while adding the
ability to outsource resources to external provid-
ers.

This multifaceted scheduler is directly imple-
mented on the Scheduler layer of the EMOTIVE
architecture. It takes advantage of the capabilities
of the underlying layer. For example, in addition to
the dynamic creation of VMs, it uses the efficient
migration and the checkpointing mechanisms. The
scheduling policy is run periodically and every
time a task arrives.

High Availability Scheduler: High-availabili-
ty scheduler (Alonso, 2011) allows managing and
reconfiguring virtualized platforms, offering a
transparent mechanism to overcome the software
failures at application level. It presents a set of
strategies to guarantee the availability of the
services while accepting the maximum possible
number of services in the platform.

From the provider’s perspective, every cus-
tomer’s service is composed by a VM where the
service is deployed (Service VM) and a user-
transparent VM for high availability purposes (HA

Figure 3. Architecture of SERA

53

EMOTIVE Cloud

VM). The HA VM is composed by two software
components: the Failure Predictor (FPdr) and the
High Availability Load Balancer (HA-LB).

The High-availability scheduler uses EMO-
TIVE capabilities to rapidly create VMs. When
the system detects that a VM is about to crash,
it uses EMOTIVE to create a new worker and
replace the previous one. In addition, it is able to
migrate VMs to provide consolidation while the
services are running.

Cloud Hosting Provider: Cloud Hosting
Provider (CHP) (Fitó, 2010) is an elastic web
hosting provider that makes use of the outsourcing
technique to take advantage of Cloud computing
infrastructures for providing scalability and high
availability capabilities to the web applications
deployed on it.

This system includes a Scheduler that manages
the provider’s in-house resources to run client’s
web application, monitors high-level performance
metrics (such as the response time) and outsources
additional VMs from third-party providers to ex-
ecute more web servers when these performance
metrics are not fulfilled (i.e. typically when the
in-house servers become overloaded).

In this work, both the provider’s in-house
resources and the external resources are imple-
mented using

EMOTIVE by directly using the external API
to request new VMs and running web servers on
top of them.

COMPs Superscalar: COMPs Superscalar
(Tejedor, 2008) exploits the inherent parallelism
of applications when running them on the Grid.
It is a new programming paradigm for Grid
enabling applications, composed of an interface
and a run-time. COMP superscalar is a software
tool developed at BSC. It was originally intended
to be used in a cluster of physical servers. Cur-
rently, BSC is developing the same idea but it
uses EMOTIVE Cloud to build an underlying
Cloud infrastructure where COMPs Superscalar
is deployed. COMPs Superscalar with EMOTIVE
is being used in the European project VENUS-C.

The first implementation uses EMOTIVE directly
by calling the OCCI methods to create and destroy
new workers in the COMPs architecture.

Hadoop Scheduler: Hadoop Scheduler (de
Nadal, 2010) appears like a possible solution
to the difficulties in resources provisioning for
computations in Hadoop environments. Virtual-
ization can solve those management problems for
Hadoop as it does for other software solutions,
giving dynamic resource allocation capabilities,
which give the customer the possibility of mak-
ing requests to the system and, if possible with
the available resources, set up the virtual Hadoop
environments, or modify existing ones according
with the requirements.

The implemented system virtualizes and man-
ages Hadoop environments by using EMOTIVE
Cloud, and provides an interface to interact with
the internal job scheduler present in Hadoop for
collecting information about the job progresses
over the running jobs. Hadoop Scheduler uses
this information to decide how to distribute the
physical resources.

INSTALLATION AND
DEPLOYMENT GUIDE

This section presents how to install EMOTIVE
in a provider and explains step by step how to
deploy the system using Xen and Tomcat to run
the applications. The system can run with other
virtualization hypervisors like KVM and Virtu-
alBox. The only difference with respect to the
procedure presented in this section is the setup
of the hypervisor that has to operate with Libvirt.

Prerequisites

Before starting, EMOTIVE requires the installa-
tion and setup of some base software in the hosts
that will be part of the system. The minimum
requirements for installing and use EMOTIVE
Cloud are:

54

EMOTIVE Cloud

•	 Debian 3.0 or higher (other GNU/Linux
distributions can be used)

•	 Xen 3.1.0 or higher and/or KVM 2.6.28.1
•	 Java 1.5 or higher
•	 Libvirt 0.7.5 or higher
•	 Apache Tomcat 5 or higher.

Step by Step Procedure from Scratch

1. 	 Install basic packages:
a. 	 Xen and Libvirt:

apt-get install xen-linux-sys-
tem-2.6.26-2-xen-amd64 libvirt0
libvirt-bin xen-hypervisor-3.2-1

b. 	 Java:

apt-get install openjdk-6-jdk

c. 	 Tomcat:

apt-get install tomcat6

d. 	 Others:

apt-get install libc6-dev
zlib1g-dev debootstrap dhcp3-
server bind9 module-init-tools

e. 	 Maven and SVN to compile the code:

apt-get install make ant ma-
ven2

2. 	 Create the EMOTIVE directory and down-
load EMOTIVE source code into this
directory:

mkdir /usr/share/EMOTIVE
svn co https://emotivecloud.
svn.sourceforge.net/svnroot/emo-
tivecloud//EMOTIVE_PATH*

Alternatively, binaries can be downloaded
from: http://sourceforge.net/projects/
emotivecloud/files/

3. 	 Edit “install.cfg” file:

Your APACHE directory
export APACHE_PATH=/aplic/igo-
iri/apache-tomcat-6.0.24/
Your EMOTIVE directory
export EMOTIVE_PATH=/usr/share/
EMOTIVE

4. 	 Install EMOTIVE Cloud using the installa-
tion script:

./install full

5. 	 The installation script compiles and installs
EMOTIVE into Apache Tomcat (puts the
EMOTIVE WAR files into the webapp di-
rectory), but additionally it is necessary to
create “/etc/VtM/rm.properties” and “/etc/
VtM/vtm.properties” configuration files.
First of all, install files in “/etc/VtM” and
“domU”:

./install create

After that, it is required to check the domain
name in “/etc/VtM/rm.properties,” the paths
in “/etc/VtM/vtm.properties,” and finally
create the domU apps, which are some re-
quired extra applications required to operate
the VMs:

./install domu

6. 	 Start the application server that will run
EMOTIVE Cloud on top:

./catalina.sh run

7. 	 Finally, when the core has already started,
the system can be tested using some clients.

55

EMOTIVE Cloud

To run these clients, JAR files can be used.
The clients interact with the “Scheduler”
and the “VtM”:

java -jar SimpleSchedulerClient.
jar
java -jar VtM.jar

It is also possible to get the JAR and WAR files
in our web page and put them manually in the
Apache Tomcat webapp directory and run the
Apache Tomcat that has EMOTIVE on top. How-
ever, it is recommendable to use the installation
script because this generates the pool (directory
that will contain the images, it will be described
in detail later) and configuration files (in “/etc/
VtM/*.cfg”) of EMOTIVE.

Xen Configuration

This section gives an overview of some steps
that need to be performed to setup Xen properly.
First of all, in order to increment number of disk
images usable by Xen, add the next option to the
kernel (for instance, in grub options):

max_loop=128

Different systems can have different network
interfaces. In order to avoid this problem, a generic
interface must be created, for instance, “brein0.”
If not, you can use the usual network interface
“ethX.” Replace default network-script line in
``/etc/xen/xend-config.sxp’’ by:

(network-script ‘network-bridge
bridge=brein0 netdev=ethX’)

Finally, reboot and in the next system boot
select the Xen 3.3.1 kernel and the system will
be ready to run VMs thanks to Xen. Notice that,
Xen 3.3.1 may have some problems when booting
from a SATA boot-disk.

In order to enable migration, we must modify
Xend configuration file by changing next lines
in “/etx/xen/xend-config.sxp”’ in every machine
involved in migration:

(xend-http-server yes)
(xend-relocation-server yes)
(xend-address ‘’)
(xend-relocation-hosts-allow ‘’)

Restarting Xen will enable live migration to
other machines. This will migrate specified do-
mains to the other host without losing connectivity.

Network Bridge Preparation

In order to use the networking capabilities of
EMOTIVE, you have to prepare the network
bridge. First of all, install the bridge-utils using
“apt-get install bridge-utils” or similar.

apt-get install bridge-utils

Later, you need to create a new net interface.
This net interface allows doing a bridge with the
new virtual machines and the network. So we need
to define a bridge in “/etc/network/interfaces.”

You need to modify the net interfaces file, so
you have defined the new bridge interface (br0)
and disabled the current (brein0 for example). The
following is “/etc/networks/interfaces.”

The loopback network interface
auto lo
iface lo inet loopback
The primary network interface
#auto eth0
#iface eth0 inet manual
#auto brein0
iface brein0 inet static
address 172.20.0.101
netmask 255.255.0.0
network 172.20.0.0
broadcast 172.20.255.255

56

EMOTIVE Cloud

gateway 172.20.0.1
dns-nameservers 172.20.0.1
dns-search edx

#auto eth0
iface eth0 inet static
address 172.20.0.101
netmask 255.255.0.0
network 172.20.0.0
broadcast 172.20.255.255
gateway 172.20.0.1
dns-nameservers 172.20.0.1
dns-search edx
auto br0
iface br0 inet static
address 172.20.0.102
netmask 255.255.0.0
network 172.20.0.0
broadcast 172.20.255.255
gateway 172.20.0.1
dns-nameservers 172.20.0.1
dns-search edx
bridge-ports eth0
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

We also have to make sure that bridge works
correctly: with the command ‘brctl show,’ we
show the state of the bridge and virtual network
interfaces.

brctl show
bridge name bridge id STP en-
abled interfaces
br0 8000.0015177e9660 no eth0
virnet0
vnet0
vnet1

To conclude with the network settings, add the
following lines to: /etc/sysctl.conf:

net.bridge.bridge-nf-call-ip6ta-
bles = 0
net.bridge.bridge-nf-call-ipta-
bles = 0
net.bridge.bridge-nf-call-arpta-
bles = 0

We load this with ‘sysctl -p /etc/sysctl.conf’
command.

EMOTIVE Pool

As mentioned before, EMOTIVE uses a path in
each host to locate local files such as VM images
and user disks, which we will refer as pool. This
section gives a detailed view about how to setup
the pool.

To setup EMOTIVE, first of all we have to
create empty EMOTIVE pool directories. For
example, it can be located in “/usr/share/EMO-
TIVE/pool.”

#./install.sh directory

EMOTIVE will use this pool to store VM
images and user’s data. If this pool is not created
before, EMOTIVE will create the base directories
at run time.

pcroot# ls /usr/share/EMOTIVE/
pool/pcroot/
cache checkpoint domU extensions
home images kernels log

You need to create and copy the disk image
in “/usr/share/EMOTIVE/pool/pcroot/images/
default.img” and put the kernels used in the virtual
machines in “/usr/share/EMOTIVE/pool/pcroot/
kernels/.”

pcroot:~# ls -ltr /usr/share/
EMOTIVE/pool/pcroot/images/
total 1025004

57

EMOTIVE Cloud

-rw-r–r– 1 root root 1048576000
2010-06-04 13:59 default.img
pcroot:~# ls -ltr /usr/share/
EMOTIVE/pool/pcroot/kernels/
-rw-r–r– 1 root root 13654779
2010-06-04 14:09 libmodules-de-
fault.tar.gz
-rw-r–r– 1 root root 2670757
2010-06-04 14:11 vm-
linuz-2.6.18.8
-rw-r–r– 1 root root 1535487
2010-06-04 14:11 vmlinuz-default

Common Pitfalls

EMOTIVE installation is easy because it only
needs to put JAR files into Apache Tomcat (we-
bapps directory). The hardest part is the EMOTIVE
pre-installation, configuring the hypervisor, the
Libvirt API, and the Libvirt bridge configuration
to communicate with the hypervisor.

The most typical error is in the EMOTIVE
environment preparation, mainly due to the bad
configuration of system environments variables.
Check the next files:

•	 “/etc/VtM/vtm.properties”: This file is
necessary to know all system environ-
ments variables: folders, domains, defaults
settings, network configuration, server and
system architecture, etc.

•	 “/etc/VtM/rm.properties”: This file is nec-
essary to know the network topology. The
file has the hostname of the hosts used by
EMOTIVE: schedulers and VtM’s hosts.

Another typical error is having the EMOTIVE
pool with wrong configuration. For example, the
directory location, the disk images and kernels
into wrong directories, etc.

Finally, there is a small possibility that EMO-
TIVE is unable to create a good initial virtual image
(*.img). To solve this, it is necessary to create it

manually, or download another ISO image and
put this image into EMOTIVE pool directory.

FAQ

Q:	 Should I use Xen or KVM hypervisor?
A:	 It depends on which Linux distribution you

are using. We prefer to use Xen in Debian
distributions, but Ubuntu has better support
for KVM, so in Ubuntu we prefer KVM.
Generally, it is easier to install and configure
Xen but the most important is the possibility
to use the Linux distribution repositories.
Some distributions have better support for
Xen and others for KVM. The best solution
is to install the hypervisor with apt-get,
aptitude, yum, zypper or others.

Q: 	 What is the best Linux distribution to use
EMOTIVE?

A:	 EMOTIVE has been successfully installed in
Debian, Ubuntu, and CentOS distributions.

Online Support and
Community Aspects

EMOTIVE is the BSC/UPC IaaS open-source
solution for Cloud Computing, which results
from BSC’s previous experience in European and
national projects. EMOTIVE has limited support
because it was originally developed to support BSC
and UPC research. There are some Web resources
and tutorials which can be freely downloaded
from our web page (www.emotivecloud.net). Ad-
ditionally, you can also contact with the authors.

Sample Service Deployed
on top of the OSS Cloud

One of the main advantages of EMOTIVE Cloud
is its support for dynamically creating VMs. Other
approaches are based in instantiating previously
created disk images and configuring some values
using contextualization. Our middleware also

58

EMOTIVE Cloud

supports this typical approach where the provider
just instantiates previously created images. Nev-
ertheless, our approach also allows creating and
configuring VMs on demand. Using this approach,
the user selects the features of the VM and the
packages he needs.

For creating a new Virtual Machine, the fol-
lowing steps are required on each host: down-
loading the guest operating system in packaged
form (a Debian Lenny through debootstrap for
this prototype), creating an image with this base
system installed, copying extra software needed
by the client in an image that will be automatically
mounted in the VM, creating home directories
and swap space, setting up the whole environ-
ment, packing it in an image, and starting the
VM. Once the VM has completely started, the
guest operating system is booted. After this, the
additional software needed by the client needs
to be instantiated (if applicable). These phases
can be clearly appreciated in the next summary.

Phases for Creating a Virtual Machine

Virtual Machine creation procedure:

•	 Configuration and creation.
◦◦ Obtain base system

▪▪ Creating disk spaces
▪▪ Configuring environment

•	 Cache archives and disk images.
◦◦ Reduces network and disk bottleneck

▪▪ Creation time from 40 to 10
seconds

•	 Starting virtual machine.
◦◦ Booting operating system

From this description, one can derive that this
process can have two bottlenecks: the network (for
downloading the guest system; around 100MB
of data) and the disk (for copying extra software

needed by the client and creating all the needed
images, namely base system, software, home, and
swap; nearly 1.6GB of data).

The network bottleneck has been solved using
a caching system per host that creates a default
image of the guest system with no settings when it
is downloaded for the first time. Then, this image
is copied for each new VM created in that host.
This almost eliminates the downloading time
(base system is only downloaded once per host
and can be reused for each new VM in that host),
but contributes to the disk bottleneck. The disk
bottleneck has been solved by adding a second
caching system per host that periodically copies
the default base system image and the images
with the most commonly used software to a cache
space. When a new VM is created, EMOTIVE
Cloud just needs to move these images (just an
i-node change) to the final location. Using both
caching systems, the complete creation of a VM
has been reduced to an average time of 7 seconds.

More details about the VM creation times are
shown in (Goiri, 2009). Additionally, our proposal
includes a data repository that allows storing the
VM images used by each customer. These images
can be later reused for creating new VMs.

In addition to dynamic creation, the user can
also use a VM and store the VM image for later
usage. In this way, the user can use a VM custom-
ized by him. To access the VM and work with it,
the user can directly use the machine by connect-
ing to the machine IP through simple SSH. The
user can obtain the IP address from the Compute
object returned by the getEnvironment (Env-ID)
function of the EMOTIVE API. Alternatively, the
user can also use the EMOTIVE API described
before to run jobs on top of the VMs. Once the
user has finished using the VM and wants to store
the image, it only has to ask EMOTIVE to destroy
the VM but specifying he wants to keep its state.

59

EMOTIVE Cloud

LESSONS LEARNED: MAIN
SHORTCOMINGS AND
FUTURE DIRECTIONS

EMOTIVE provides facilities for on-demand
creation and life cycle management of virtual
machines and for supporting resource manage-
ment in Cloud environments. EMOTIVE is based
on well-founded technologies (including support
for different hypervisors) and has demonstrated to
be useful to build Cloud Computing virtualized
infrastructures. Actually, EMOTIVE simplifies
the use of Cloud Computing both for clients and
providers. The former are offered a simple inter-
face based on de-facto standards (such as OCCI,
OVF, and JSDL) to manage VMs and execute ap-
plications, where the latter are offered with basic
management capabilities that they can use to build
complex middleware services to manage their
infrastructure in an autonomic way. Successful
use cases have demonstrated that these capabili-
ties allow achieving eco-efficient computing and
other new challenges (Manageability and Self
-*, Federation, Interoperability, Virtualization,
Elasticity and Adaptability).

EMOTIVE can be easily extended due to its
decentralized and modular architecture, being
also highly interoperable because it supports the
most popular standards. EMOTIVE supports good
functionality with respect with its commercial
counterparts, although these probably include
additional capabilities. As commented before,
this occurs due to the main goal of EMOTIVE,
which is being used to support research at UPC
and BSC. Due to the same reason, EMOTIVE
support and documentation is not as exhaustive
as their counterparts.

Future developments in EMOTIVE highly
depend on the research projects of people using
it. According to this, we are currently adding
data ownership, user accounting, and security
support to EMOTIVE. In addition, we also plan
to evolve current functionalities depending on
technologies and standards evolution, for instance

improving OVF and OCCI support, VLAN/VPN
management, and support for other virtualization
hypervisors.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science
and Technology of Spain and the European Union
under contract TIN2007-60625 (FEDER funds),
the Ministry of Industry of Spain under contract
TSI-020301-2009-30 (Avanza2 NUBA project),
and Generalitat de Catalunya under contract
2009-SGR-980.

REFERENCES

Alonso, J. (2011). Autonomic high availability and
resource usage optimization: Proactive software
rejuvenation solution for web environments on
virtualized platforms. PhD Thesis. Barcelona,
Spain: Polytechnic University of Catalonia.

Amazon. (2006). Elastic compute cloud (EC2).
Retrieved March 22, 2011 from http://aws.ama-
zon.com/ec2/.

API Libvirt Virtualization. (2005). Webpage.
Retrieved March 22, 2011 from http://libvirt.org.

BREIN. (2006-2009). FP6-IST-2005-2.5.4 Eu-
ropean project. Retrieved March 22, 2011 from
http://www.eu-brein.com.

de Nadal, D., & Becerra, Y. (2010). Support for
managing dynamically Hadoop clusters. Master
Thesis. Barcelona, Spain: Polytechnic University
of Catalonia.

DMTF. (2010). Open virtualization format (OVF)
specification: Version 1.1.0. Retrieved March
22, 2011 from http://www.dmtf.org/standards/
published_documents/DSP0243_1.1.0.pdf.

60

EMOTIVE Cloud

Ejarque, J., de Palol, M., Goiri, I., Julià, F., Guitart,
J., Torres, J., & Badia, R. (2008). Using semantic
technologies for resource allocation in computing
service providers. In Proceeding of the 5th IEEE
International Conference on Services Comput-
ing (SCC 2008), (pp. 583-587). Honolulu, HI:
IEEE Press.

EMOTIVE Cloud. (2009). Autonomic systems
and ebusiness platforms research line. Retrieved
March 22, 2011 from http://www.emotivecloud.
net.

Fitó, J. O., Goiri, I., & Guitart, J. (2010). SLA-
driven elastic cloud hosting provider. In Proceed-
ings of the 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP
2010), (pp. 111-118). Pisa, Italy: Euromicro Press.

Fontan, J., Vazquez, T., Gonzalez, L., Montero,
R. S., & Llorente, I. M. (2008). OpenNebula:
The open source virtual machine manager for
cluster computing. Paper presented at the Open
Source Grid and Cluster Software Conference.
San Francisco, CA.

Goiri, I., Fitó, J. O., Julià, F., Nou, R., Berral, J.
L., Guitart, J., & Torres, J. (2010a). Multifaceted
resource management for dealing with heteroge-
neous workloads in virtualized data centers. In
Proceedings of the 11th ACM/IEEE International
Conference on Grid Computing (Grid 2010), (pp.
25-32). Brussels, Belgium: IEEE Press.

Goiri, I., Julià, F., Ejarque, J., de Palol, M., Badia,
R., Guitart, J., & Torres, J. (2009). Introducing
virtual execution environments for application
lifecycle management and SLA-driven resource
distribution within service providers. In Proceed-
ings of the 8th IEEE International Symposium
on Network Computing and Applications (NCA
2009), (pp. 211-218). Cambridge, MA: IEEE
Press.

Goiri, I., Julià, F., Fitó, J. O., Macías, M., &
Guitart, J. (2010b). Resource-level QoS metric
for CPU-based guarantees in cloud providers.
Lecture Notes in Computer Science, 6296, 34–47.
doi:10.1007/978-3-642-15681-6_3

NUBA. (2009-2012). MITyC TSI-020301-2009-
30 Avanza2 project. Retrieved March 22, 2011
from http://nuba.morfeo-project.org.

Nurmi, D., Wolski, R., Grzegorczyk, C., Ober-
telli, G., Soman, S., Youse, L., & Zagorodnov,
D. (2009). The eucalyptus open-source cloud
computing system. In Proceedings of the 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2009), (pp.
124-131). Shanghai, China: IEEE Press.

OGF. (2008). Job submission description language
(JSDL) specification: Version 1.0. Retrieved
March 22, 2011 from http://www.gridforum.org/
documents/GFD.136.pdf.

OGF. (2010). Open cloud computing interface
(OCCI) infrastructure: Version 1. Retrieved March
22, 2011 from http://forge.ogf.org/sf/docman/do/
downloadDocument/projects.occi-wg/docman.
root.drafts.occi_specification/doc16162.

OPTIMIS. (2010-2013). FP7-ICT-2009-5 Eu-
ropean project. Retrieved March 22, 2011 from
http://www.optimis-project.eu.

SORMA. (2006-2009). FP6-IST-2005-2.5.4 Eu-
ropean project. Retrieved March 22, 2011 from
http://www.sorma-project.eu.

Tejedor, E., & Badia, R. (2008). COMP super-
scalar: Bringing GRID superscalar and GCM
together. In Proceedings of the 8th IEEE Inter-
national Symposium on Cluster Computing and
the Grid (CCGrid 2008), (pp. 185-193). Lyon,
France: IEEE Press.

VENUS-C. (2010-2012). FP7-INFRASTRUC-
TURES-2010-2 European project. Retrieved
March 22, 2011 from http://www.venus-c.eu.

