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Abstract. As Al-driven applications expand across industries, the need
for efficient edge computing solutions becomes increasingly critical. Tra-
ditional AT models are designed for high-performance cloud infrastruc-
tures, but emerging constraints—such as privacy requirements, network
limitations, and real-time processing needs—necessitate optimized de-
ployment on resource-constrained edge devices. This study presents a
practical experience in adapting Segment Anything Model 2 (SAM2),
a vision foundation model, for edge AI environments. The adaptation
process involved translating the model to C++ using ONNX Runtime,
enabling efficient execution on heterogeneous hardware. Experimental
evaluations demonstrate that deploying SAM2 at the edge enhances pro-
cessing efficiency, reduces reliance on network stability, and improves
real-time responsiveness. This research provides valuable insights into
Al in pervasive computing environments, contributing to the sustainable
and scalable deployment of foundation models on edge devices.
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1 Introduction

The rapid advancement of Artificial Intelligence (AI) has fueled its integration
into diverse domains, from healthcare and industrial automation to consumer
electronics and smart cities. Traditionally, AI workloads have been executed
on high performance computing (HPC) infrastructures or cloud-based systems,
using vast computational resources to train and deploy sophisticated models.
However, the growing demand for real-time processing, data privacy, and re-
duced network dependency has shifted focus toward edge computing—bringing
AT closer to the data source.

Edge computing enables Al-driven decision-making on local devices, such
as smartphones, IoT sensors, and embedded systems, without relying on cloud-
based processing. Although this approach reduces latency and enhances privacy,
it also presents significant challenges. Edge devices are often constrained in terms
of computational power, memory, and energy efficiency, making the deployment
of large-scale Al models particularly difficult. Consequently, optimizing AI mod-
els for efficient execution on edge devices has emerged as a critical research focus.
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This study explores the adaptation of Segment Anything Model 2 (SAM?2)
[14], a vision foundation model originally designed for cloud-based deployment,
for execution in edge Al environments. The adaptation process involved trans-
lating the model to C++ using ONNX Runtime [3], enabling efficient execution
on heterogeneous edge hardware.

2 Related Work

Vision Foundation Models (VFMs) are large-scale neural networks trained on
massive image datasets to learn general visual representations. Many VFMs, such
as SAM2 [14], CLIP [13], and DINO [2], are based on Vision Transformers (ViTs)
[4], which offer strong performance but are highly computationally demanding
[11].

Improving the efficiency of Vision Transformers (ViTs), especially by reduc-
ing the quadratic cost of self-attention with respect to input length, has been
a key research focus [19,20,11]. While the original ViT adopts a plain, non-
hierarchical design, models like Swin [10], MViT [6], PViT [16], and Hiera [15]
introduce hierarchical, multi-stage structures. These achieve strong performance
but are often slower in practice [15]. To improve speed and efficiency, hybrid
models combining ViTs with convolutions—such as EfficientViT [9] and Mo-
bileNetV4 [12]—have also been proposed.

This paper focuses on SAM2 [14], a VFM capable of segmenting and tracking
any object in video using interactive prompts like points and bounding boxes.
SAM2 achieves strong performance and versatility across vision tasks, employing
a hierarchical ViT-based image encoder, Hiera [15]. However, its main efficiency
bottleneck lies in the memory module, which uses past frame information for
consistent tracking. The large number of tokens in cross-attention leads to sig-
nificant computation and memory overhead [17]. Recent works aim to reduce
these costs for both SAM [21, 22, 18] and SAM2 [17].

A recent study [17] proposes a lightweight variant with a non-hierarchical en-
coder and optimized memory module for efficient mobile deployment. In [8], the
authors introduce Efficient Frame Pruning (EFP), which optimizes the memory
bank by retaining only the most informative frames. While such methods im-
prove SAM2’s efficiency, they overlook deployment challenges on edge devices.
Python’s high memory use, runtime overhead, and dependency issues make it
unsuitable for resource-constrained environments, where users typically prefer
self-contained applications over managing interpreters and dependencies. To ad-
dress these challenges, this paper presents a C++ implementation of SAM?2 that
optimizes memory usage and reduces computational overhead, while improving
compatibility and simplifying deployment across various hardware platforms.
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3 Methodology

3.1 Preliminaries

SAM2 Architecture. SAM2 builds upon SAM [5], a model designed for the
Promptable Visual Segmentation (PVS) task, where the goal is to generate a
valid segmentation mask based on an input prompt, such as a bounding box or
a point, that indicates the object of interest. SAM2 extends SAM’s capabilities
to the video domain, using point, box, and mask prompts on individual frames
to define the spatio-temporal extent of the object to be segmented. Prompts
can be applied at any frame in the video—enabling the correction of incorrectly
tracked masks—and can be either positive or negative.
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Fig. 1: Outline of the SAM 2 general architecture.

The SAM2 architecture comprises an image encoder, a prompt-guided mask
decoder, and a memory mechanism (see Figure 1). The image encoder processes
each frame (with a fixed input resolution of 10242) once, generating uncondi-
tioned tokens (feature embeddings) that represent the content of each frame.
SAM2 uses a hierarchical vision transformer, Hiera [12], to handle image encod-
ing. The encoded features of the current frame are then passed into the memory
attention phase, where they are conditioned on features from previous frames,
past predictions, and any new prompts. This phase consists of multiple stacked
transformer blocks that perform both self-attention and cross-attention with
memories of prior frames stored in a memory bank.

The prompt encoder processes various input types, such as points (positive or
negative), bounding boxes, or masks, according to the design described in [20].
Sparse prompts are encoded using positional encodings combined with learned
embeddings specific to each prompt type. Input masks are embedded through
convolutional layers and integrated with the frame embedding. The mask decoder
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consists of stacked transformer blocks that update both the prompt and frame
embeddings. It can generate multiple candidate masks for each frame. If no
follow-up prompts clarify ambiguities, the model propagates only the mask with
the highest predicted Intersection over Union (IoU) for the current frame. In
cases where no valid object is present in a frame, the model is designed to
handle this scenario appropriately.

The memory encoder generates inputs for the memory bank by down-sampling
the output mask and combining it element-wise with the unconditioned frame
embedding from the image encoder. The memory bank stores spatial feature
maps for the past N frames (N = 6) and separately for the past prompted
frames. Furthermore, the mask decoder’s 256-dimensional output tokens for
each frame are retained as object pointers, serving as compact vectors that en-
code high-level semantic information about the object to be segmented.

C++ and ONNX Runtime. To facilitate the deployment of SAM2 on edge
devices and commodity hardware, this paper presents the migration of the model
from Python to C++, addressing challenges like high memory usage, runtime
overhead, and the complexity of managing dependencies inherent in Python. One
of the main practical constraints is that many personal computers lack a proper
Python setup, and end users generally prefer self-contained applications rather
than managing interpreters and dependencies manually. Additionally, Python
utilities designed to generate self-contained executables often struggle with com-
plex deployments, leading to inefficient and excessively large executables.

To overcome these challenges and enable efficient, flexible deployment, SAM?2
was converted to the ONNX format [1], a standardized representation that sup-
ports interoperability across different frameworks. When combined with ONNX
Runtime [3], this conversion allows for execution in C++ while leveraging built-
in optimizations such as node pruning and operator fusion. These features are
essential for performance in resource-constrained environments, ensuring that
the model can run effectively on a wide range of hardware.

ONNX Runtime is a high-performance execution engine that supports run-
ning the model across diverse hardware platforms, including CPUs, GPUs, and
specialized accelerators like TensorRT and OpenVINO. Its optimizations reduce
both latency and overhead, making it particularly well-suited for deployment on
edge and commodity hardware, where computational resources are often limited.

3.2 SAM2 Migration to C++

To achieve a C+-+ implementation of SAM2, the involved models were exported
to the ONNX format, while the remaining code was directly translated to C++-.
This approach ensures that the inference code relies exclusively on the ONNX
Runtime libraries, which are optimized for efficient and hardware-aware deploy-
ment. The process involved determining which parts could be directly trans-
lated into C++ and which required export to the ONNX format. The decision
was driven by factors such as compatibility, computational efficiency, and the
specific needs of the pipeline. This work has focused on migrating the image
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segmentation-related parts, with plans to extend support for video segmenta-
tion in the future.
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Fig. 2: Workflow of the resulting C++ implementation of SAM2.

The original mask decoder and prompt encoder components have been com-
bined into a single model, referred to as the image decoder. Figure 2 illustrates
the resulting overall workflow. First, the image is normalized and resized to fit
the dimensions required by the image encoder (1024 x 1024). Then, the image is
passed through the image encoder, which produces three outputs: image_embed,
a compact representation of the image containing semantic information, and
high_res_features 0 and 1, which hold spatial details useful for accurate seg-
mentation. Next, specific points are provided as prompts to guide the segmen-
tation process. Finally, these points, along with the outputs from the image
encoder, are passed to the image decoder, which segments the image and gen-
erates the corresponding masks. Once the masks are generated, they are resized
to match the original size of the input image.

In the image encoder, the normalization and resizing process was directly
translated to C+-, as these steps involve operations incompatible with ONNX.
Additionally, performing these calculations in C++ was deemed more computa-
tionally efficient. The output was also restructured, as ONNX does not support
tuple-based data formats.

The process of exporting models to ONNX format, programmed in Python,
depends on both the original code and the checkpoints. It involves several steps.
First, the model inputs must be prepared with the correct dimensions, ensuring
each input has the expected shape, including tensors with initial values. Next,
clear and descriptive names are assigned to the inputs and outputs for easier
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identification in the exported format. For inputs with variable dimensions, such
as point coordinates, dynamic axes are used to define which dimensions can vary,
for example, the number of points, making the x and y coordinates dynamic.
Finally, the model is exported to the ONNX format using torch.onnx.export,
ensuring it meets the format’s requirements. Additionally, the onnx-simplifier
library (onnxsim) is used to simplify the model by reducing unnecessary com-
putation nodes, removing redundant operations, and optimizing the structure
of the computation graph, resulting in a more compact and efficient model for
inference.

4 Experiments and results

4.1 Experimental setup

To evaluate the performance of the final implementation, a series of experiments
were conducted to ensure that the accuracy of the original model was preserved.
Computational performance improvements, including latency and memory us-
age, were assessed, along with an evaluation of the model’s enhanced adapt-
ability to heterogeneous hardware, such as CPUs and mid-range GPUs. The
COCO dataset (Common Objects in Context) [7], a widely recognized bench-
mark offering a diverse range of images and annotations, was used to provide a
comprehensive test for segmentation models.
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Figure 3: Execution Time on a Local Machine

The experiments were conducted on a local machine equipped with a mid-
range GPU. Although the primary goal was not to improve results on a high-
performance cloud server, results from a standard cloud setup were also presented
to assess latency differences and confirm that model accuracy remained intact.
The local hardware, used for testing the C+- implementation, featured an Alder
Lake i7-12650H integrated SoC, 16GB of DDR4 RAM (8GB*2 at 3200MHz), a
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1TB NVMe PCle Gendx4 SSD without DRAM, and an RTX 4050 graphics card
with 6GB of GDDR6 memory, 120 tensor cores, and a 96-bit memory interface.
The cloud hardware, used to obtain baseline results with the original Python
implementation, included a Tesla T4 GPU with 16GB of GDDR6 memory, 320
tensor cores, and a 256-bit memory interface.

For robustness, each experiment was repeated five times, and the mean per-
formance values are reported.
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Figure 4: Execution Time in a Cloud Environment

4.2 Latency evaluation

Several experiments were conducted to evaluate the average latency and stabil-
ity of the implementation. A total of 1000 consecutive executions with varying
images and prompts were performed on both the local machine and the cloud
server. Figure 3 displays the execution time results for all 1000 runs using iden-
tical input (image and prompt).

The execution time of the ONNX-formatted model initially starts slow, with
the first execution taking approximately 1 second. However, after this initial
execution, the times stabilize around 250 ms (240 ms for the image encoder
and 10 ms for the image decoder), with an average of 246 ms. This initial de-
lay is attributed to factors such as library loading, initialization, caching, and
computation graph optimizations.

The execution time results from the cloud environment are shown in Figure
4. Here, significant variability in execution times is observed, ranging from 470
ms to 750 ms, indicating a notably wide span. This variability is primarily due to
network instability, which introduces high and fluctuating latency. Furthermore,
the average execution time is 529 ms, which is approximately twice the execution
time observed with the C++ implementation.
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Figure 5: Comparison of Average Image Encoder Execution Times: (a) Local
Machine vs. (b) Cloud Environment
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The same experiments were repeated with varying inputs, including different
images and a varying number of points in the prompts. As expected, execution
times remained consistent. Figure 5 shows the average execution times of the
image encoder for different images, while Figure 6 presents the execution times
for varying prompts.
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Figure 6: Comparison of Average Image Decoder Execution Times: (a) Local
Machine vs. (b) Cloud Environment

4.3 Accuracy evaluation

To verify that the resulting ONNX/C++ version behaves consistently with the
original model, we compared the segmentation accuracy of both implementations
using the COCO dataset, which contains segmentation masks. Since the COCO
dataset does not provide points as input, we generated these points from the
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Fig. 8: Example segmentation results. (a) Our C++/ONNX implementation; (b)
original SAM2 implementation; (c) ground truth.
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ground truth masks. The points were randomly sampled within the segments
defined by the masks and then used as input to the image decoder. Figure 7
presents a boxplot comparing the IoU values obtained from both versions. This
visualization reveals that the ONNX model exhibits a slight decrease in accu-
racy. However,rall performance remains within acceptable bounds for practical
applications. Figure 8 shows some example segmentation results.

5 Conclusions

This work explored the challenges and strategies involved in optimizing the de-
ployment of vision foundation models on Edge devices through a practical use
case. The Segment Anything Model 2 (SAM2) was adapted and deployed by
translating it to C++. ONNX and ONNX Runtime were used to support this
transition while preserving model performance and flexibility. The results ob-
tained show that the approach is feasible, achieving a functional deployment
with an improvement in latency 50%. Our study demonstrates that an opti-
mized Edge Al deployment not only enhances processing efficiency but also re-
duces the dependency on stable network connections, making AI applications
more resilient and responsive. By investigating the trade-offs and strategies in-
volved in adapting cloud-native AI models for edge computing, this research
contributes to the broader goal of sustainable and scalable AI in ubiquitous
computing environments.
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