WWW.bsc.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

©

Data sharing in the BigData era

Toni Cortes and Anna Queralt

BigDataCloud 2014, Europar 2014, Porto

EXCELENCIA
SEVERO
OCHOA

(€ Motivation and background
(€ Vision

(€ Technological detalils

(€ Conclusions

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Before everything started ...

(€ What ignited our research “bigbang”
Different data models: Persistent vs. non persistent
New storage devices: byte addressable

Sharing is what really matters

(€ And then dataClay came to life ...
(more details on how all fits together
In the next 50 minutes)

BigData problems

({ Big data probler-- _ /;5{;('/

Let me be a bit more controversial

(C If we store the weigh of all rain drops

(€ Is this big data?

big volume,
velocity (many drops per second),
and variety (info from many sources)

(€ Can we extract any valuable information?
(€ No value, no big data
(Real value comes from sharing and combining

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Why sharing data is important?

(€ Cooperation is the way to success

(Key information comes from
merging data from different sources

l ‘tﬂl}a-;”l »

el

(€ Data sources: public and open or private (not shared)

Some examples of what we want to achieve

(€ Newspaper archival

({ Geospatial
Share and enrich data

(€ Health
Privacy and flexibility

Mg

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

How is data shared today?

(Real sharing: all actors have full access

to infrastructure
Huge trust alliances or irrelevant data

Very flexible

({ Data copies: owner decides what can be copied
Unnecessary data movement

///// % Stale data
L/% / L Owner loses control over data
| Very flexible

({ Data services: owner decides what and how data is shared
Very restrictive

Changes imply data provider involvement
Owner keeps full control

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

(€ Motivation and background

(C Vision
— Self containment and enrichment
— “New” programming model

(€ Technological details
(€ Conclusions

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Our vision

(€ Enable all actors to
“Share” an infrastructure
Merge all data in a “single “ data set
Upload computations to be shared
See different “views” of the data

((Key idea: self-contained and data enrichment by 3™ parties

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Key technology: self-contained objects

(Self-contained objects
Data)

(7 \
Code
Behavior policies ‘\

e
-

((But ...

... this looks much like a data service

Self-contained objects

(€ Push the idea of data services to the limit

Client App Client App

Data store

Functions @l

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Key-technology: 3 party enrichments

(Self-contained objects
seem to be a new technology to offer
data services in a different way

€ Then...

... we need something else ...

... something to make it really flexible!

3rd-party data enrichment

(€ By enrichment we understand:
Adding new information to existing datasets
Adding new code to existing datasets

.

(€ This enrichment should
Be possible during the life of data
Not be limited to the data owner

Enable different views of the data to different users/clients
Not everybody should be forced to see the same enrichments
Several enrichments should be available concurrently

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

(€ Data can be enriched both with data and code, in provider infrastructure
(t Code can be executed in the provider infrastructure

Enrichment

Data-provider Infrastructure Q
\
—_———
@I Client App

0

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Data integration in a single infrastructure?

(€ Using a “single” infrastructure g‘!

g

¥ e

may become a bottleneck \ ‘

(Security and privacy policies should be part of the data

({ Thus, data could be offloaded to other infrastructures
Without breaking the data policies

(€ Data owner enables 3™ party enrichment and ...
(€ ... does not lose control

And now ... behavior policies

(€ Behavior policies include
Privacy
Security
Integrity
Life cycle
Etc.

(€ Who manages them
Traditionally: platform and/or infrastructure

Self-contained objects: the object itself
If each object manages its own behavior, the system is far more scalable

Implementing behavior policies

(€ How it is implemented
Policies implemented as part of object methods

(€ How are policies defined
Defined using traditional declarative languages (rules)
Compiled and injected into class methods

Moreover...

(Efficient usage of resources
Data and code can be offloaded to resources not accessible by the data provider
Also for storage = reduce data movements if data is placed close to client

Client Infrastructure

Provider Infrastructure

Functions @l

Cloud

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

(€ Motivation and background

({ Vision
— Self containment and enrichment
— “New” programming model

(€ Technological details
(€ Conclusions

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Why persistent data is different than volatile?

((Today

We have one data model for volatile data
Traditional data structures and/or objects

We have a different data model for the persistent data
Relational database, NoSQL database, files

(€ Future

Store data in the same way as when volatile
-~ Store objects and relations

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Data selection (Queries make no sense anymore)

(€ Enrichment enables accessing persistent data as if in memory

(€ In memory: 2 D --x
Data “never” queried > ;

Data linked according to needs of program “r ~ st
Next data item found by following a link, not a query

({ Persistent data should behave in a similar way
Following a link is faster than a query over the whole dataset

o<y Programs do not need to make any differences whether
~ Data is in memory or in persistent storage

> Enrichments enable data to be linked in different ways

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

(€ Motivation and background
(€ Vision

({ Technological details

(€ Conclusions

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Platform overview

(. Storage platform based on objects
Self-contained persistent objects (data and code)
Currently a prototype for Java applications

/I dataClay infrastructure

(&
Client g
S

Client \

i
Barcelona
Supercomputing
Center 24
Centro Nacional de Supercomputacicn

dataClay Interface

(€ Data API
Make object persistent
Delete persistent object

Retrieve objects
By oid

By query (simple)

“Execute method”

(€ Management API

New class
New enrichment

Get classes (stubs)

Barcelona

Supercomputing

Center 25
Centro Nacional de Supercomputacion

Management App A

dataClay.getClasses (myCredentials) ;

User A

Consumer App A

Molecule m;

m.makePersistent () ;

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Molecule
.class

—

Stub class
(original)

Using dataClay

Data Provider App

dataClay.newClass (“Molecule”,

path);

VI

Molecule
.class

Original class

enrichme
nt.class

—

Enrichment

Management App B

dataClay.newEnrichment (myCredentials,
“Molecule”,
enrichmentPath) ;

dataClay.getClasses (myCredentials) ;

Molecule
.class

—

Stub class
(enriched)

User B

Consumer App B

Molecule m;

result = m.myMethod() ;

26

Stubs

Original Molecule class

public class Molecule {

public void setNext (Molecule nextMolecule) {
this.next = nextMolecule;

1

public Molecule getNext () {
return this.next();

}

public Point getCenterOfMass () {
return this.centerOfMass();

Molecule stub class

public class Molecule {
public Molecule (ObjectID oid) {
this = (Molecule) dataClay.getCbject (oid);
}
public ObjectID makePersistent () {
return dataClay.makePersistent (this);
}
public Molecule[] getAlike () {
return dataClay.queryByExample (this) ;
}
//original Molecule methods
public void setNext (Molecule nextMolecule) {

dataClay.executeRemoteImpl (..) ;
}

Barcelona

Supercomputing }

Center 27
Centro Nacional de Supercomputacion

Transparent persistence

//We create the atoms of a molecule

Atom[] atoms = new Atom[2];
atoms[0] = new Atom("H",0,1,0,1);
atoms[l] = new Atom("O",0,0,1,1);
Molecule newMolecule = new Molecule ("NewWater", atoms);
objectID = newMolecule.makePersistent () ;\
New object and subobijects

are stored
Molecule lastMolecule = new Molecule (previopsID) ;

Get persistent object by OID

//Add the new molecule as a member of the list

lastMolecule.setNex:éEEzf:iiiule);
Updated object is

implicitly stored

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Remote execution

// Query for molecules
Molecule sampleMolecule = new Molecule();
sampleMolecule.setName ("Water”) ;

Molecule[] molecules = sampleMolecule.getAlike();\

Molecule currentMolecule = molecules[0];)]
while (currentMolecule != null) { Get perS|stent ObJeCt by query

//Calculate center of mass of molecule i

Point centerOfMass = currentMolecule.getCenterOfMass () ;
sumX += centerOfMass.getX () * centerOfMass.getMass () ;
sumY += centerOfMass.getY () * centerOfMass.getMass() ;
sumZ += centerOfMass.getZ () * centerOfMass.getMass() ;
sumMassOfMols += centerOfMass.getMass () ;

System.out.println("Getting next molecule...") Al methods of a persistent class
currentMolecule = currentMolecule.getNext () ; are executed remotely
} \
centerX = sumX / sumMassOfMols; Get persistent object through a
centerY = sumY / sumMassOfMols ;
method
centerZ = sumZ / sumMassOfMols;

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

Enrichment

Class enriched by user U
// Query for molecules

Molecule sampleMolecule = new Molecule(); public class Molecule ({
sampleMolecule.setName ("Water”) ; &mhc Point getCentroid() |
Molecule[] molecules = sampleMolecule.getAlike () ;

}
Molecule currentMolecule = molecule[0]; }
while (currentMolecule != null) {

//Calculate center of mass of molecule 1

Point centroid = currentMolecule.getCentroid() ;
sumX += centroid.getX();

sumY += centroid.getY(); “‘~\\-~
sumz += centroid.getz(); The new method is available
numMols++; (only for U)

System.out.println("Getting next molecule...");
currentMolecule = currentMolecule.getNext ()

}

centerX = sumX / numMols;
centerY = sumY / numMols;
center? sumZ / numMols;

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Index

(€ Motivation and background
(€ Vision

({ Technological details

({ Conclusions

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

New business models to share data

((Today

— In order to exploit data you need
* To have the data

» And the infrastructure to store and compute it
— Or subcontract it, but may lose control over the data

(€ Our proposal enables to decouple
— The data provider
— The infrastructure provider
— And the different service providers

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

dataClay

(t Storage platform that provides flexible big data sharing
({ Today

— Basic enrichment functionality
— Reasonable performance
« Similar to state of the art OODB
(€ Near future
— Higher performance
— Security
— Scalability

Thanks to ...

(€ Original team
— Anna Queralt
— Jonathan Marti
— Daniel Gasull

(€ Recently joined
— Juanjo Costa
— Alex Barcelo

(€ Former team members
— Ernest Artiaga

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacicn

