
www.bsc.es

Data sharing in the BigData era

Toni Cortes and Anna Queralt

BigDataCloud 2014, Europar 2014, Porto

Agenda

!   Motivation and background
!   Vision
!   Technological details
!   Conclusions

Before everything started …

!   What ignited our research “bigbang”
Different data models: Persistent vs. non persistent

New storage devices: byte addressable
Sharing is what really matters

!   And then dataClay came to life …
(more details on how all fits together
In the next 50 minutes)

BigData problems

!   Big data problems (3Vs)

!   Volume: money
!   Velocity: money (replication HW, model, …)

!   Variety: more a data-model problem than storage technology

Volume

Velocity Variety I know I am being
over s

implistic
!

!
But … !

!

…. where is
 the p

roblem
 then?

!

Let me be a bit more controversial

!   If we store the weigh of all rain drops

!   Is this big data?
big volume,

velocity (many drops per second),
and variety (info from many sources)

!   Can we extract any valuable information?
!   No value, no big data

!   Real value comes from sharing and combining

Why sharing data is important?

!   Cooperation is the way to success

!   Key information comes from
merging data from different sources

!   Data sources: public and open or private (not shared)

!   Geospatial
Share and enrich data

!   Newspaper archival
Control over data

!   Health
Privacy and flexibility

Some examples of what we want to achieve

How is data shared today?

!   Real sharing: all actors have full access
to infrastructure
Huge trust alliances or irrelevant data
Very flexible

!   Data copies: owner decides what can be copied
Unnecessary data movement

Stale data
Owner loses control over data

Very flexible

!   Data services: owner decides what and how data is shared
Very restrictive

Changes imply data provider involvement
Owner keeps full control

Agenda

!   Motivation and background
!   Vision

–  Self containment and enrichment
–  “New” programming model

!   Technological details
!   Conclusions

Our vision

!   Enable all actors to
“Share” an infrastructure

Merge all data in a “single “ data set
Upload computations to be shared

See different “views” of the data

!   Key idea: self-contained and data enrichment by 3rd parties

Key technology: self-contained objects

!   Self-contained objects
Data
Code

Behavior policies

!   But …

… this looks much like a data service

!   Push the idea of data services to the limit

Self-contained objects

Data

Client App Client App

Data Data

Data

Functions

Security, Integrity, …

Data

Security, ...
Functions

Data service

Data store

Data store

Key-technology: 3rd party enrichments

!   Self-contained objects
seem to be a new technology to offer

data services in a different way

!   Then…

… we need something else …

… something to make it really flexible!

3rd-party data enrichment

!   By enrichment we understand:
Adding new information to existing datasets
Adding new code to existing datasets

!   This enrichment should
Be possible during the life of data

Not be limited to the data owner
Enable different views of the data to different users/clients

Not everybody should be forced to see the same enrichments
Several enrichments should be available concurrently

!   Data can be enriched both with data and code, in provider infrastructure
!   Code can be executed in the provider infrastructure

Then…

Enrichment

Client App

Data-provider Infrastructure

Data integration in a single infrastructure?

!   Using a “single” infrastructure
may become a bottleneck

!   Security and privacy policies should be part of the data
!   Thus, data could be offloaded to other infrastructures

Without breaking the data policies

!   Data owner enables 3rd party enrichment and …
!   … does not lose control

And now … behavior policies

!   Behavior policies include
Privacy
Security
Integrity

Life cycle
Etc.

!   Who manages them
Traditionally: platform and/or infrastructure

Self-contained objects: the object itself
If each object manages its own behavior, the system is far more scalable

Implementing behavior policies

!   How it is implemented
Policies implemented as part of object methods

!   How are policies defined
Defined using traditional declarative languages (rules)

Compiled and injected into class methods

!   Efficient usage of resources
Data and code can be offloaded to resources not accessible by the data provider

Also for storage è reduce data movements if data is placed close to client

Moreover…

Data

Security, ...
Functions

Provider Infrastructure

Client Infrastructure

Cloud

Agenda

!   Motivation and background
!   Vision

–  Self containment and enrichment
–  “New” programming model

!   Technological details
!   Conclusions

Why persistent data is different than volatile?

!   Today
We have one data model for volatile data

Traditional data structures and/or objects
We have a different data model for the persistent data

Relational database, NoSQL database, files

!   Future
Store data in the same way as when volatile

Store objects and relations

Data selection (Queries make no sense anymore)

!   Enrichment enables accessing persistent data as if in memory

!   In memory:
Data “never” queried
Data linked according to needs of program

Next data item found by following a link, not a query

!   Persistent data should behave in a similar way
Following a link is faster than a query over the whole dataset

Programs do not need to make any differences whether
Data is in memory or in persistent storage

Enrichments enable data to be linked in different ways

Agenda

!   Motivation and background
!   Vision
!   Technological details
!   Conclusions

! dataClay: Storage platform based on objects
Self-contained persistent objects (data and code)

Currently a prototype for Java applications

24

M
id

dl
ew

ar
e

dataClay infrastructure

Client

Client

Stubs

Stubs

!   Data API
Make object persistent
Delete persistent object

Retrieve objects
By oid

By query (simple)
“Execute method”

!   Management API
New class

New enrichment
Get classes (stubs)

25

26

dataClay

...
dataClay.getClasses(myCredentials);
...

Management App A

...
Molecule m;
...
m.makePersistent();
...

Consumer App A

User A
User B

...
dataClay.newEnrichment(myCredentials,

 “Molecule”,
enrichmentPath);
...
dataClay.getClasses(myCredentials);
...

Management App B

...
Molecule m;
...
result = m.myMethod();
...

Consumer App B

Molecule
.class

Original class
Molecule
.class

Stub class
(original)

enrichme
nt.class

Enrichment

Molecule
.class

Stub class
(enriched)

...
dataClay.newClass(“Molecule”,
path);
...

Data Provider App

27

public class Molecule {

 public Molecule(ObjectID oid) {
 this = (Molecule) dataClay.getObject(oid);
 }
 public ObjectID makePersistent() {
 return dataClay.makePersistent(this);
 }
 public Molecule[] getAlike() {
 return dataClay.queryByExample(this);
 }
 //original Molecule methods
 public void setNext(Molecule nextMolecule) {
 dataClay.executeRemoteImpl(…);
 }
 …

}

public class Molecule {

 …
 public void setNext(Molecule nextMolecule) {
 this.next = nextMolecule;
 }
 public Molecule getNext() {
 return this.next();
 }
 public Point getCenterOfMass() {
 return this.centerOfMass();
 }

}

Original Molecule class

Molecule stub class

//We create the atoms of a molecule
Atom[] atoms = new Atom[2];
atoms[0] = new Atom("H",0,1,0,1);
atoms[1] = new Atom("O",0,0,1,1);

Molecule newMolecule = new Molecule("NewWater", atoms);
objectID = newMolecule.makePersistent();

Molecule lastMolecule = new Molecule(previousID);

//Add the new molecule as a member of the list
lastMolecule.setNext(newMolecule);

New object and subobjects
are stored

Get persistent object by OID

Updated object is
implicitly stored

// Query for molecules
Molecule sampleMolecule = new Molecule();
sampleMolecule.setName("Water”);
Molecule[] molecules = sampleMolecule.getAlike();

Molecule currentMolecule = molecules[0];
while (currentMolecule != null) {

 //Calculate center of mass of molecule i
 Point centerOfMass = currentMolecule.getCenterOfMass();
 sumX += centerOfMass.getX() * centerOfMass.getMass();
 sumY += centerOfMass.getY() * centerOfMass.getMass();
 sumZ += centerOfMass.getZ() * centerOfMass.getMass();
 sumMassOfMols += centerOfMass.getMass();

 System.out.println("Getting next molecule...");
 currentMolecule = currentMolecule.getNext();

}
centerX = sumX / sumMassOfMols;
centerY = sumY / sumMassOfMols ;
centerZ = sumZ / sumMassOfMols;

All methods of a persistent class
are executed remotely

Get persistent object by query

Get persistent object through a
method

// Query for molecules
Molecule sampleMolecule = new Molecule();
sampleMolecule.setName("Water”);
Molecule[] molecules = sampleMolecule.getAlike();

Molecule currentMolecule = molecule[0];
while (currentMolecule != null) {

 //Calculate center of mass of molecule i
 Point centroid = currentMolecule.getCentroid();
 sumX += centroid.getX();
 sumY += centroid.getY();
 sumZ += centroid.getZ();
 numMols++;

 System.out.println("Getting next molecule...");
 currentMolecule = currentMolecule.getNext();

}
centerX = sumX / numMols;
centerY = sumY / numMols;
centerZ = sumZ / numMols;

The new method is available
(only for U)

public class Molecule {

 …
 public Point getCentroid(){
 …
 }

}

Class enriched by user U

Index

!   Motivation and background
!   Vision
!   Technological details
!   Conclusions

New business models to share data

!   Today
–  In order to exploit data you need

•  To have the data
•  And the infrastructure to store and compute it

–  Or subcontract it, but may lose control over the data

!   Our proposal enables to decouple
–  The data provider
–  The infrastructure provider
–  And the different service providers

dataClay

!   Storage platform that provides flexible big data sharing
!   Today

–  Basic enrichment functionality
–  Reasonable performance

•  Similar to state of the art OODB

!   Near future
–  Higher performance
–  Security
–  Scalability

Thanks to …

!   Original team
–  Anna Queralt
–  Jonathan Martí
–  Daniel Gasull

!   Recently joined

–  Juanjo Costa
–  Alex Barceló

!   Former team members
–  Ernest Artiaga

